2022届初中数学一轮复习 单元检测(四) 图形初步与三角形
展开
这是一份2022届初中数学一轮复习 单元检测(四) 图形初步与三角形
单元检测(四) 图形初步与三角形(时间:120分钟 满分:150分)一、选择题(本大题共10小题,每小题4分,满分40分)1.如图所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC的大小为( )A.20° B.60° C.70° D.160°2.(2020·湖南怀化)如图,已知直线a,b被直线c所截,且a∥b,若∠α=40°,则∠β的度数为( )A.140° B.50° C.60° D.40°3.(2020·贵州遵义)一副直角三角板如图放置,使两三角板的斜边互相平行,每块三角板的直角顶点都在另一三角板的斜边上,则∠1的度数为( )A.30° B.45° C.55° D.60°4.(2020·江苏徐州)三角形的两边长分别为3 cm和6 cm,则第三边长可能为( )A.2 cm B.3 cm C.6 cm D.9 cm5.(2020·广西玉林)一个三角形木架三边长分别是75 cm,100 cm,120 cm,现要再做一个与其相似的三角形木架,而只有长为60 cm和120 cm的两根木条.要求以其中一根为一边,从另一根截下两段作为另两边(允许有余料),则不同的截法有( )A.一种 B.两种 C.三种 D.四种6.如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是 ( )A.ABAE=AGAD B.DFCF=DGAD C.FGAC=EGBD D.AEBE=CFDF7.(2020·湖南长沙)从一艘船上测得海岸上高为42米的灯塔顶部的仰角是30度,船离灯塔的水平距离为( )A.423米 B.143米 C.21米 D.42米8.(2020·江苏苏州)如图,小明想要测量学校操场上旗杆AB的高度,他做了如下操作:(1)在点C处放置测角仪,测得旗杆顶的仰角∠ACE=α;(2)量得测角仪的高度CD=a;(3)量得测角仪到旗杆的水平距离DB=b.利用锐角三角函数解直角三角形的知识,旗杆的高度可表示为( )A.a+btan α B.a+bsin α C.a+btanα D.a+bsinα9.(2020·湖北荆门)如图,在△ABC中,AB=AC,∠BAC=120°,BC=23,D为BC的中点,AE=14AB,则△EBD的面积为( )A.334 B.338 C.34 D.3810.(2020·重庆B卷)如图,在△ABC中,AC=22,∠ABC=45°,∠BAC=15°,将△ACB沿直线AC翻折至△ABC所在的平面内,得△ACD.过点A作AE,使∠DAE=∠DAC,与CD的延长线交于点E,连接BE,则线段BE的长为( )A.6 B.3 C.23 D.4二、填空题(本大题共4小题,每小题5分,满分20分)11.(2020·四川乐山)计算:|-2|-2cos 60°+(π-2 020)0= . 12.(2020·湖南湘西)如图,直线AE∥BC,BA⊥AC,若∠ABC=54°,则∠EAC= 度. 13.(2020·湖北十堰)如图,在△ABC中,DE是AC的垂直平分线.若AE=3,△ABD的周长为13,则△ABC的周长为 . 14.(2020·湖南张家界)如图,正方形ABCD的边长为1,将其绕顶点C按逆时针方向旋转一定角度到CEFG位置,使得点B落在对角线CF上,则阴影部分的面积是 . 三、(本大题共2小题,每小题12分,满分24分)15.(2019·江苏南通)如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B.连接AC并延长到点D,使CD=CA.连接BC并延长到点E,使CE=CB.连接DE,那么量出DE的长就是A,B的距离.为什么?16.如图,在△ABC中,AB=AC,AD为BC边上的中线,DE⊥AB于点E.(1)求证:△BDE∽△CAD;(2)若AB=13,BC=10,求线段DE的长.四、(本大题共2小题,每小题14分,满分28分)17.(2020·黑龙江绥化)如图,热气球位于观测塔P的北偏西50°方向,距离观测塔100 km的A处,它沿正南方向航行一段时间后,到达位于观测塔P的南偏西37°方向的B处,这时,B处距离观测塔P有多远?(结果保留整数,参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75,sin 50°≈0.77,cos 50°≈0.64,tan 50°≈1.19)18.(2020·黑龙江哈尔滨)已知,在△ABC中,AB=AC,点D,E在BC上,BD=CE,连接AD,AE. 图1 图2(1)如图1,求证:AD=AE;(2)如图2,当∠DAE=∠C=45°时,过点B作BF∥AC,交AD的延长线于点F,在不添加任何辅助线的情况下,请直接写出图2中四个等腰三角形,使写出的每个等腰三角形的顶角都等于45°.五、(本大题共2小题,每小题19分,满分38分)19.(2020·福建)如图,△ADE由△ABC绕点A按逆时针方向旋转90°得到,且点B的对应点D恰好落在BC的延长线上,AD,EC相交于点P.(1)求∠BDE的度数;(2)F是EC延长线上的点,且∠CDF=∠DAC.①判断DF和PF的数量关系,并证明;②求证:EPPF=PCCF.20.(2020·甘肃天水)性质探究:如图(1),在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC的长度之比为 . 图(1) 图(2)理解运用:(1)若顶角为120°的等腰三角形的周长为4+23,则它的面积为 . (2)如图(2),在四边形EFGH中,EF=EG=EH.①求证:∠EFG+∠EHG=∠FGH;②在边FG,GH上分别取中点M,N,连接MN.若∠FGH=120°,EF=20,求线段MN的长.类比拓展: 顶角为2α的等腰三角形的底边与一腰的长度之比为 (用含α的式子表示). 参考答案1.D 解析 ∵∠AOD=160°,∴∠BOC=∠AOD=160°,故选D.2.D 解析 ∵∠α=40°,∴∠1=∠α=40°,∵a∥b,∴∠β=∠1=40°,故选D.3.B 解析 ∵AB∥CD,∴∠1=∠D=45°,故选B.4.C 解析 6-3=3
相关试卷
这是一份初中数学中考一轮复习第4章几何初步知识与三角形单元检测(含答案),共11页。试卷主要包含了填空题,选择题,解答题等内容,欢迎下载使用。
这是一份人教版中考数学总复习单元检测四几何初步知识与三角形含答案,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份人教版初中数学总复习优化设计单元检测四几何初步知识与三角形含答案,共11页。试卷主要包含了填空题,选择题,解答题等内容,欢迎下载使用。