![第一学期九年级数学第22章《二次函数》22.1二次函数的图像和性质 期末复习练习卷(人教版)第1页](http://img-preview.51jiaoxi.com/2/3/12580984/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![第一学期九年级数学第22章《二次函数》22.1二次函数的图像和性质 期末复习练习卷(人教版)第2页](http://img-preview.51jiaoxi.com/2/3/12580984/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![第一学期九年级数学第22章《二次函数》22.1二次函数的图像和性质 期末复习练习卷(人教版)第3页](http://img-preview.51jiaoxi.com/2/3/12580984/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
第一学期九年级数学第22章《二次函数》22.1二次函数的图像和性质 期末复习练习卷(人教版)
展开
这是一份第一学期九年级数学第22章《二次函数》22.1二次函数的图像和性质 期末复习练习卷(人教版),共6页。试卷主要包含了设A,抛物线 y=3x2 的对称轴是,抛物线y=等内容,欢迎下载使用。
2021-2022学年度第一学期九年级数学第22章《二次函数》22.1二次函数的图像和性质 期末复习练习卷(人教版)一、单选题1.若函数 是二次函数,则m的值为( ) A. 3 B. -3 C. D. 92.下列函数中,属于二次函数的是( ) A. B. C. D. 3.二次函数 与一次函数 在同一坐标系中的大致图象可能是( ) A. B.
C. D. 4.设A( , ),B( , ),C(3, )是抛物线 上的三点,则 , , 的大小关系为( ) A. B. C. D. 5.抛物线 的对称轴是( ) A. 直线 B. 直线 C. 直线 D. 直线 6.二次函数 的图象的开口方向,对称轴和顶点坐标为( ) A. 开口向上,对称轴为直线 ,顶点
B. 开口向上,对称轴为直线 ,顶点(1,5)
C. 开口向下,对称轴为直线 ,顶点(1, )
D. 开口向上,对称轴为直线 ,顶点(1, )7.若二次函数 的图象如图所示,则坐标原点可能是( ) A. P点 B. Q点 C. M点 D. N点8.抛物线y=(x+1)2+2上两点(0,a)、(﹣1,b),则a、b的大小关系是( ) A. a>b B. b>a C. a=b D. 无法比较大小9.已知抛物线 上部分点的横坐标x 与纵坐标y的对应值如表: …12345… …-5 …根据如表,下列判断正确的是 ( )A. 该抛物线开口向上 B. 该抛物线的对称轴是直线x=1
C. 该抛物线一定经过点 D. 该抛物线在对称轴左侧部分y随x的增大而减小10.抛物线 的对称轴是( ) A. x= B. x=3 C. x=-3 D. x=6二、填空题11.若二次函数y=x2+bx-5的对称轴为直线x=2,则关于x的方程x2+bx-5=2x-13的解为 12.如图,抛物线y=-x2-2x+3与x轴交于A、B两点,与y轴交于C点,M点在抛物线的对称轴上,当点M到点B的距离与到点C的距离之和最小时,点M的坐标为 13.如图,二次函数y=(x﹣1)2﹣1的图象(0≤x≤3),y的取值范围是 . 14.已知函数y=|x2﹣4|的大致图象如图所示,那么:方程|x2﹣4|=m . (m为实数) ①若该方程恰有3个不相等的实数根,则m的值是 . ②若该方程恰有2个不相等的实数根,则m的取值范围是 . 15.已知函数 是二次函数,则m= . 三、解答题16.当m为何值时,函数 是二次函数. 17.已知二次函数 的图象如图所示,求 的面积. 18.画出函数 的图象,写出它的开口方向,对称轴和顶点,并说明当y随x的增大而增大时,x的取值范围. 19.近期,海峡两岸关系的气氛大为改善.大陆相关部门对原产台湾地区的15种水果实施进口零关税措施,扩大了台湾水果在大陆的销售.某经销商销售了台湾水果凤梨,根据以往销售经验,每天的售价与销售量之间有如下关系: 每千克售价(元)40393837…30每天销量(千克)60657075…110设当单价从40元/千克下调了x元时,销售量为y千克;
(1)写出y与x间的函数关系式;
(2)如果凤梨的进价是20元/千克,若不考虑其他情况,那么单价从40元/千克下调多少元时,当天的销售利润W最大?利润最大是多少?20.已知二次函数y=2x2﹣x+1,当﹣1≤x≤1时,求函数y的最小值和最大值.彤彤的解答如下: 解:当x=﹣1时,则y=2×(﹣1)2﹣(﹣1)+1=4;当x=1时,则y=2×12﹣1+1=2;所以函数y的最小值为2,最大值为4.彤彤的解答正确吗?如果不正确,写出正确的解答.21.已知:抛物线y=-x2-6x+21.求: (1)直接写出抛物线y=-x2-6x+21的顶点坐标; (2)当x>2时,求y的取值范围. 22.某种爆竹点燃后,其上升高度h(米)和时间t(秒)符合关系式:h=v0t﹣ gt2(0<t<4),其中g以10米/秒2计算.这种爆竹点燃后以v0=20米/秒的初速度上升,问:这种爆竹在地面上点燃后,经过多少时间离地面最远?
答案解析部分一、单选题1.【答案】 C 2.【答案】 B 3.【答案】 D 4.【答案】 A 5.【答案】 C 6.【答案】 D 7.【答案】 B 8.【答案】 A 9.【答案】 C 10.【答案】 B 二、填空题11.【答案】 , 12.【答案】 (-1,2) 13.【答案】 ﹣1≤y≤3 14.【答案】 4;m=0或m>4 15.【答案】 -3 三、解答题16.【答案】 解:∵函数 是二次函数 ∴ 解得:m=3即当m=3时,函数 是二次函数.17.【答案】 解:∵二次函数 ∴顶点 ∵点 在图像上且在 轴上,即 时 的坐标∴ ∴ ∴ 的面积 18.【答案】 解:解:函数的图象如图所示,
∵抛物线的开口向上,对称轴为x=6,顶点坐标为(6,3)
当x>6时,y随x的增大而增大
19.【答案】 解:(1)∵每下调一元,销售量就增加5千克,x表示单价下调数,
∴销售量从60千克增加,增加量为5x千克,
∴y=60+5x;
(2)设销售利润为w,
∵销售利润=每千克的利润×销售量,每千克的利润=每千克售价﹣每千克进价,
∴w=(40﹣x﹣20)y=﹣5(x﹣4)2+1280,
∵当x=4时,w最大=1280,
∴下调4元时当天利润最大,最大利润是1280元. 20.【答案】 解:彤彤的解答不正确, ∵ ∴二次函数的的对称轴 ,∵ ,且2>0,∴当 时,二次函数有最小值 ,二次函数在 时,y随x增大而减小,二次函数在 时,y随x增大而增大,∵ ,∴当 时,二次函数有最大值 ,∴二次函数的最大值为4,最小值为1.21.【答案】 (1)解:∵抛物线y=-x2-6x+21=-(x+3)2+30, ∴该抛物线的顶点坐标是(-3,30)
(2)解:∵抛物线y=-x2-6x+21=-(x+3)2+30, ∴当x>-3时,y随x的增大而减小,∴当x>2时,y的取值范围是y<-(2+3)2+30=5,即当x>2时,y的取值范围是y<5。22.【答案】 解:由题意可得:h=20t﹣ ×10t2=﹣5t2+20t=﹣5(t﹣2)2+20(0<t<4), 即这种爆竹在地面上点燃后,经过2s时间离地面最远.
相关试卷
这是一份初中数学人教版九年级上册第二十二章 二次函数22.1 二次函数的图象和性质22.1.1 二次函数课后复习题,共10页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份初中人教版22.1.1 二次函数课后作业题,共7页。
这是一份初中数学人教版九年级上册22.1 二次函数的图象和性质综合与测试习题,共5页。试卷主要包含了选择题,填空题 ,解答题等内容,欢迎下载使用。