搜索
    上传资料 赚现金
    英语朗读宝

    人教版八年级下册数学第十七章—— 17.1 第1课时 勾股定理课件PPT

    人教版八年级下册数学第十七章—— 17.1 第1课时 勾股定理课件PPT第1页
    人教版八年级下册数学第十七章—— 17.1 第1课时 勾股定理课件PPT第2页
    人教版八年级下册数学第十七章—— 17.1 第1课时 勾股定理课件PPT第3页
    人教版八年级下册数学第十七章—— 17.1 第1课时 勾股定理课件PPT第4页
    人教版八年级下册数学第十七章—— 17.1 第1课时 勾股定理课件PPT第5页
    人教版八年级下册数学第十七章—— 17.1 第1课时 勾股定理课件PPT第6页
    人教版八年级下册数学第十七章—— 17.1 第1课时 勾股定理课件PPT第7页
    人教版八年级下册数学第十七章—— 17.1 第1课时 勾股定理课件PPT第8页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版第十七章 勾股定理17.1 勾股定理图片ppt课件

    展开

    这是一份人教版第十七章 勾股定理17.1 勾股定理图片ppt课件,共23页。PPT课件主要包含了学习目标,情景导入,知识精讲,∵S大正方形=c2,赵爽弦图,b-a,知识拓展,bc为正数,公式变形,勾股定理等内容,欢迎下载使用。
    1.了解勾股定理的发现过程.2.掌握勾股定理的内容,会用面积法证明勾股定理.重点难点:1.勾股定理的内容.     2.勾股定理的证明.3.会用勾股定理进行简单的计算.
    相传2500年前,毕达哥拉斯有一次在朋友家作客,发现朋友家用砖铺成的地面图案反映直角三角形三边的某种数量关系,同学们,我们也来观察一下地面的图案,看看你能发现什么?
    思考:如图,三个正方形的面积有什么关系?
    发现:两个小正方形的面积之和等于大正方形的面积.
    知识点一 勾股定理的认识及验证
    发现:S=S1+S2,即c2=a2+b2.
    a b c
    结论:等腰直角三角形斜边的平方等于两直角边的平方和.
    思考:等腰直角三角形三条边长度之间有怎样的特殊关系?  
    等腰三角形有上述性质,其他三角形也有这个性质吗?观察并填写下表,看看A、B、C的面积有什么关系?
    结论:SA+SB=SC
    归纳:以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
    命题1 如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.两直角边的平方和等于斜边的平方.
    由上面的例子,我们猜想:
    如图我国古代证明该命题的“赵爽弦图”.
    赵爽指出:按弦图,又可以勾股相乘为朱实二,倍之为朱实四.以勾股之差自相乘为中黄实.加差实,亦成弦实.
    你是如何理解的?你会证明吗?  
    证法1 让我们跟着我国汉代数学家赵爽拼图,再用所拼的图形证明命题吧.
    S小正方形=(b-a)2,
    ∴S大正方形=4·S三角形+S小正方形,
    “赵爽弦图”表现了我国古人对数学的钻研精神和聪明才智,它是我国古代数学的骄傲.因此,这个图案被选为2002年在北京召开的国际数学家大会的会徽.
    证法2 毕达哥拉斯证法
    ∴a2+b2+2ab=c2+2ab,
    ∴a2 +b2 =c2.
    证明:∵S大正方形=(a+b)2=a2+b2+2ab,
    ∴a2 + b2 = c2.
    证法3 美国第二十任总统伽菲尔德的“总统证法”.
    如图,图中的三个三角形都是直角三角形,求证:a2 + b2 = c2.
    两千多年前,古希腊有个毕达哥拉斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯定理。为了纪念毕达哥拉斯学派,1955年希腊曾经发行了一枚纪念邮票。
    我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”,它被记载于我国古代著名的数学著作《周髀算经》中。
    在我国又称商高定理,在外国则叫毕达哥拉斯定理,或百牛定理.
    如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.
    1.作 8 个全等的直角三角形(2 条直角边长分别为 a、b斜边长为 c)再作3个边长分别为 a、b、c 的正方形把它们拼成两个正方形(如图)你能利用这两个图形验证勾股定理吗? 写出你的验证过程.
    解:由图可知大正方形的边长为:a+b则面积为(a+b)2,图中把大正方形的面积分成了四部分,分别是:边长为a的正方形,边长为b的正方形,还有两个长为b,宽为a的长方形.根据同一个图形面积相等,由左图可得(a+b)2=a2+b2+4× ab,由右图可得(a+b)2=c2+4× ab.所以a2+b2=c2.
    知识点二 利用勾股定理进行计算
    例1 如图,在Rt△ABC中, ∠C=90°.
    (1)若a=b=5,求c;
    (2)若a=1,c=2,求b.
    1.下列说法中,正确的是 ( )A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c2
    2.图中阴影部分是一个正方形,则此正方形的面积为 .
    3.下列说法中正确的是(  )A.已知a,b,c是三角形的三边长,则a2+b2=c2B.在直角三角形中,两边的平方和等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c2
    4.如图,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,则点D到BC的距离是(  )A.3   B.4  C.5   D.6
    5.求斜边长17 cm、一条直角边长15 cm的直角三角形的面积.
    解:设另一条直角边长是x cm. 由勾股定理得152+ x2 =172, 即x2=172-152=289–225=64,∴ x=±8(负值舍去),∴另一直角边长为8 cm,
    直角三角形的面积是
    解:∵AE=BE,∴S△ABE= AE·BE= AE2.又∵AE2+BE2=AB2,∴2AE2=AB2,∴S△ABE= AB2= ;同理可得S△AHC+S△BCF= AC2+ BC2.又∵AC2+BC2=AB2,∴阴影部分的面积为 AB2= .
    7.如图,以Rt△ABC的三边长为斜边分别向外作等腰直角三角形.若斜边AB=3,求△ABE及阴影部分的面积.

    相关课件

    初中数学人教版八年级下册第十七章 勾股定理17.1 勾股定理集体备课ppt课件:

    这是一份初中数学人教版八年级下册第十七章 勾股定理17.1 勾股定理集体备课ppt课件,共25页。PPT课件主要包含了学习目标,勾股定理的发现,观察并填写下表,SA+SBSC,c13,a20,勾股定理的证明,Sa2+b2,即c2a2+b2,基础巩固等内容,欢迎下载使用。

    人教版八年级下册17.1 勾股定理示范课课件ppt:

    这是一份人教版八年级下册17.1 勾股定理示范课课件ppt,共21页。PPT课件主要包含了情境引入,探究新知,如何证明这个命题,拓展应用,我们应先求出什么量,先求出对角线,线段BD,线段OBOD,怎么求OBOD呢,类题运用等内容,欢迎下载使用。

    人教版八年级下册17.1 勾股定理课文配套课件ppt:

    这是一份人教版八年级下册17.1 勾股定理课文配套课件ppt,共24页。PPT课件主要包含了学习目标,情景导入,知识精讲,针对练习,解如图所示,当堂检测等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map