终身会员
搜索
    上传资料 赚现金
    知识讲解_平面向量的数量积_提高练习题
    立即下载
    加入资料篮
    知识讲解_平面向量的数量积_提高练习题01
    知识讲解_平面向量的数量积_提高练习题02
    知识讲解_平面向量的数量积_提高练习题03
    还剩10页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    知识讲解_平面向量的数量积_提高练习题

    展开
    这是一份知识讲解_平面向量的数量积_提高练习题,共13页。

    平面向量的数量积【学习目标】1.理解平面向量数量积的含义及其物理意义;2.了解平面向量的数量积与向量投影的关系;3.掌握数量积的坐标表示,会进行平面向量数量积的运算;4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系;【要点梳理】要点一: 平面向量的数量积1. 平面向量数量积(内积)的定义:已知两个非零向量与,它们的夹角是,则数量叫与的数量积,记作,即有.并规定与任何向量的数量积为0.2.一向量在另一向量方向上的投影:叫做向量在方向上的投影.要点诠释:1. 两个向量的数量积与向量同实数积有很大区别(1)两个向量的数量积是一个实数,不是向量,符号由的符号所决定.(2)两个向量的数量积称为内积,写成;今后要学到两个向量的外积,而是两个向量的数量的积,书写时要严格区分.符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替.(3)在实数中,若,且,则;但是在数量积中,若,且,不能推出.因为其中有可能为0.2. 投影也是一个数量,不是向量;当为锐角时投影为正值;当为钝角时投影为负值;当为直角时投影为0;当=0时投影为;当=180时投影为.要点二:平面向量数量积的几何意义数量积表示的长度与在方向上的投影的乘积,这是的几何意义。图所示分别是两向量夹角为锐角、钝角、直角时向量在向量方向上的投影的情形,其中,它的意义是,向量在向量方向上的投影是向量的数量,即。 事实上,当为锐角时,由于,所以;当为钝角时,由于,所以;当时,由于,所以,此时与重合;当时,由于,所以;当时,由于,所以。要点三:向量数量积的性质设与为两个非零向量,是与同向的单位向量.1.2.3.当与同向时,;当与反向时,. 特别的或4.5.要点四:向量数量积的运算律 1.交换律:2.数乘结合律:3.分配律:要点诠释:1.已知实数a、b、c(b≠0),则ab=bca=c.但是;2.在实数中,有(ab)c=a(bc),但是显然,这是因为左端是与共线的向量,而右端是与共线的向量,而一般与不共线.要点五:向量数量积的坐标表示1.已知两个非零向量,,2.设,则或3.如果表示向量的有向线段的起点和终点的坐标分别为、,那么(平面内两点间的距离公式).要点六:向量在几何中的应用(1)证明线段平行问题,包括相似问题,常用向量平行(共线)的充要条件(2)证明垂直问题,常用垂直的充要条件(3)求夹角问题,利用(4)求线段的长度,可以利用或【典型例题】类型一:平面向量数量积的运算例1. (1)已知||=4,||=5,向量与的夹角为,求①·;②(+)2;③2―2;④(2+3)·(3―2);(2)若向量++=0,且||=3,||=1,||=4,求·+·+·的值。【思路点拨】(1)(+)2=,(2+3)·(3―2)=6||2+5·―6||2 把模和数量积代入可得。(2)(++)2=2+2+c2+2(·+·+·),把模和数量积代入可得。【答案】(1)10 61 -9 ―4(2)―13【解析】 (1)①。②(+)2=||2+2·+||2=61。③2―2=||2―||2=-9。④(2+3)·(3―2)=6||2+5·―6||2=―4。(2)∵(++)2=2+2+2+2(·+·+·),∴。【总结升华】(1)此类题目要充分利用有关的运算法则将其转化为求数量积及模的问题,特别要灵活应用2=||2。(2)在解题中,利用了(++)2=2+2+c2+2(·+·+·)这一关系式,类似于实数的运算。举一反三:【变式1】已知||=5,||=4,〈,〉=,求(+)·.【答案】35【解析】原式= = =35例2.(1)若||=4,·=6,求在方向上的投影;(2)已知||=6,为单位向量,当它们之间的夹角分别等于60°、90°、120°时,求出在方向上的正投影,并画图说明。【答案】(1)(2)略【解析】 (1)∵·=|| ||cos=6,又||=4,∴4||cos=6,∴。(2)在方向上的投影为||·cos。 如上图所示,当=60°时,在方向上的正投影的数量为||·cos60°=3;当=90°时,在方向上的投影的数量为||·cos90°=0;当=120°时,在方向上的正投影的数量为||·cos120°=-3。【总结升华】 要注意在方向上的投影与在方向上的投影不是相同的。类型二:平面向量模的问题例3.已知||=||=4,向量与的夹角为,求|+|,|―|。 【思路点拨】已知两个向量的模和夹角,把|+|和|―|用向量的模和夹角的来表示,所以先求出和,然后再开方即可。 【答案】4,【解析】 因为2=||2=16,2=||2=16,,所以。同事可求。【总结升华】关系式2=||2,可使向量的长度与向量的数量积互相转化。因此欲求|+|,可求(+)·(+),并将此式展开。由已知||=||=4,得·=·=16,·也可求得为―8,将上面各式的值代入,即可求得被求式的值。举一反三:【高清课堂:平面向量的数量积395485 例4】【变式1】已知,求。【答案】 【解析】,同理,【变式2】已知的夹角为,, ,则 等于( ) A 5 B. 4 C. 3 D. 1【解析】, ,解得,故选B.【总结升华】涉及向量模的问题一般利用,注意两边平方是常用的方法.类型三:向量垂直(或夹角)问题例4.(2015 上海月考)已知,,(1)若,求与的夹角;(2)若与的夹角为60°,试确定实数k,使与垂直.【答案】(1);(2)【解析】(1)∵,,,∴,∴,∴,∴与的夹角为.(2)∵,,与的夹角为60°,与垂直,∴,∴9k+(1-k)×3×4×cos60°-16=0,解得.举一反三:【变式1】已知与为两个不共线的单位向量,k为实数,若向+与向量k-垂直,则k=________。 【答案】1【变式2】已知是两个非零向量,同时满足,求的夹角.【解析】法一:将两边平方得, 则, 故的夹角为30°.法二: 数形结合 因为,如图作,则,是等边三角形,延长至C,使AC=AB,,与的夹角为,易知大小为30°。【总结升华】注意两个向量夹角共起点,灵活应用两个向量夹角的两种求法.【高清课堂:平面向量的数量积395485 例5】【变式3】已知为非零向量,且,,求证:。【证明】由,得, (1)同理: (2)由(1)、(2)式得:,例5.(1)已知量、、满足++=0,且||=5,||=7,||=10,求、的夹角的余弦值;(2)已知||=2,||=3,与的夹角为60°,若+与+的夹角为锐角,求实数的取值范围。 【答案】(1)(2)【解析】 (1)由++=0知,+=-,∴|+|=||,(+)2=2,即2+2·+2=2。∴。则。故、的夹角的余弦值为。(2)由题意可得。又(+)·(+)= 2+(2+1) ·+2,而+与+的夹角为锐角,∴2+(2+1) · +2>0,而2=||2=4,2=||2=9,·=3,∴32+13+3>0,解得或。但是当=1时,+与+共线,其夹角不为锐角。故的取值范围是。【总结升华】(1)已知两向量的模,欲求它们的夹角,一般是先求它们的数量积,然后利用向量的数量积的定义求其夹角。(2)求向量,的夹角范围,可转化为·与零的关系来确定,本题要注意排除两向量+与+共线且同向的情况。因为此时两向量夹角为0°,非锐角。两向量夹角为锐角,则其数量积大于零,反之若两向量数量积大于零,则夹角不一定为锐角,还可能存在两夹角为0°的情况。 举一反三:【变式1】 对于两个非零向量,,求使|+t|的值最小时t的值,并求此时与+t的夹角。【答案】90°【解析】 |+t|2=2+2(2·)t+t22=||2+2(·)t+t2||2 。当时,|+tb|2取得最小值,即|+tb|取得最小值,此时,。又∵≠0,(+t)≠0,∴⊥(+t)。∴与+t的夹角为90°。【总结升华】本题中字母较多,求|+t|的最小值是转化为关于t的一元二次函数的最值问题,同时应用数量积进行化简也是必不可少的 。类型四:平面向量数量积的坐标表示及运算 例6.(2017 安徽模拟)已知向量.(1)若,求实数x的值;(2)当取最小值时,求与的夹角的余弦值.【思路点拨】(1)根据向量的数量积和向量的模,先求出,再根据向量的垂直即可求出x的值. (2)根据二次函数的性质即可求出x的值,再根据向量的夹角公式即可求出.【答案】(1);(2)【解析】(1)设,∴,解得 或 当时,∴,∵,∴3(4x―1)―(2―3x)=0,解得,当时,∴,∵,∴3(5x-2)+1=0,解得(2)设与的夹角θ由(1)可知,当时,,则,当时,取最小值,则,∴,∴,当时,,则,当时,取最小值,则,∴,∴【总结升华】关于向量数量积的坐标运算的问题,关键是熟练掌握数量积的坐标运算公式以及相关的模长公式和夹角公式 举一反三:【变式1】(2015 湖南衡阳县一模)已知,,是同一平面内的三个向量,其中 (1)若,且,求的坐标;(2)若,且与垂直,求与的夹角.【答案】(1),或;(2)θ=π【解析】(1)关于,,是同一平面内的三个向量,其中,若,且,可设,则由,可得=±2,∴,或.(2)∵,且与垂直,∴,化简可得,即,∴cosθ=-1,故与的夹角θ=π.【总结升华】涉及向量数量积的坐标运算的问题,关键是熟练掌握数量积的坐标运算公式以及相关的模长公式和夹角公式,在这个过程中还要熟练运用方程的思想;值得注意的是,对于一些向量数量积坐标运算的问题,有时考虑其几何意义可使问题快速获解。 例7.在△ABC中,,,且△ABC的一个内角为直角,求k的值。【思路点拨】△ABC中的哪一个内角为直角并不明确,因此要分类讨论,分类讨论的时候要分类明确,不重不漏。【解析】 (1)当∠A=90°时,,故2×1+3k=0,即。(2)当∠B=90°时,,,故2×(―1)+3(k―3)=0,。(3)当∠C=90°时,。由(2)得。故―1+k(k―3)=0,k2―3k―1=0,。故当或或时,△ABC为直角三角形。【总结升华】直角边所形成的两向量互相垂直,故可借此构造关于k的方程。举一反三:【变式1】已知=(1,1),=(0,―2)当k为何值时,(1)k―与+共线;(2)k―与+的夹角为120°。【答案】(1)-1(2) 【解析】∵=(1,1),=(0,―2),k―=k(1,1)―(0,―2)=(k,k+2)。+=(1,1)+(0,―2)=(1,―1)。(1)∵k-与+共线,∴k+2―(―k)=0。∴k=-1。(2)∵,,(k―)·(+)=(k,k+2)·(1,―1)=k―k―2=―2,而k―与+的夹角为120°,∴,即。化简,整理得k2+2k―2=0,解之得。类型五:平面向量数量积的综合应用例8. 平面内有向量,,,点M为直线OP上的一个动点。(1)求当取最小值时,求的坐标;(2)当点M满足(1)的条件和结论时,求cos∠AMB的值。【解析】 (1)如图,设M(x,y)。则,∵点M在直线OP上,∴向量与共线。又,∴x·1-y·2=0,即x=2y。∴。又,,∴。同理。于是,=4y2―12y+5+y2―8y+7=5y2―20y+12由二次函数的知识,可知当时,有最小值―8,此时。(2)当,即y=2时,有,,,,,∴。【总结升华】平面向量的共线关系、垂直或数量积关系式常和函数、三角函数、解析几何中的直线、直线与曲线的位置关系等知识联系起来解决问题。 举一反三:【变式1】如图,点P是以AB为直径的圆O上动点,是点P关于的对称点,。(1)当点P是弧上靠近B的三等分点时,求的值;(2)求的最大值和最小值。【答案】(1)(2)、【解析】(1)以直径所在直线为轴,以为坐标原点建立平面直角坐标系。因为P是弧靠近点B的三等分点,连接OP,则,点P坐标为。又点A坐标是,点B坐标是,所以,所以。(2)设则所以所以 = = =当有最小值,当有最大值。
    相关试卷

    知识讲解_余弦定理_提高练习题: 这是一份知识讲解_余弦定理_提高练习题,共8页。

    知识讲解_平面_提高练习题: 这是一份知识讲解_平面_提高练习题,共8页。

    知识讲解_圆的方程_提高练习题: 这是一份知识讲解_圆的方程_提高练习题,共11页。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        知识讲解_平面向量的数量积_提高练习题
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map