终身会员
搜索
    上传资料 赚现金
    英语朗读宝
    立即下载
    加入资料篮
    知识讲解_余弦定理_基础练习题第1页
    知识讲解_余弦定理_基础练习题第2页
    知识讲解_余弦定理_基础练习题第3页
    还剩4页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    知识讲解_余弦定理_基础练习题

    展开

    这是一份知识讲解_余弦定理_基础练习题,共7页。
    余弦定理编稿:张希勇   审稿:李霞【学习目标】1.掌握余弦定理的内容及证明余弦定理的向量方法; 2.熟记余弦定理及其变形形式,会用余弦定理解决两类基本解三角形问题; 3.通过三角函数,余弦定理,向量的数量积等知识间的联系,理解事件之间的联系与辨证统一的关系.          【要点梳理】要点一、学过的三角形知识1.1)一般约定:中角ABC所对的边分别为23)大边对大角,大角对大边,即     等边对等角,等角对等边,即4)两边之和大于第三边,两边之差小于第三边,即.2.中,123要点诠释:初中讨论的三角形的边角关系是解三角形的基本依据要点二、余弦定理及其证明三角形任意一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。即:     余弦定理的推导已知:中,及角,求角的对应边.证明:方法一:向量法1)锐角中(如图), 即:        (*)同理可得:,要点诠释:1)推导(*)中,的夹角应通过平移后得到,即向量的起点应重合,因此的夹角应为,而不是.2)钝角三角形情况与锐角三角形相同。3)对于直角三角形中时,, ,也满足余弦定理。方法二:解析几何方法——利用两点间距离公式这里我们只讨论锐角三角形的情形,对于直角三角形和钝角三角形的情形的讨论相同。如图所示建立坐标系.则点两点间的距离可知,整理得到.余弦定理的变形公式:要点三、利用余弦定理解三角形1.利用余弦定理可以解决下列两类三角形的问题:    已知三角形的两条边及夹角,求第三条边及其他两个角;    已知三角形的三条边,求其三个角。要点诠释:在余弦定理中,每一个等式均含有四个量,利用方程的观点,可以知三求一.2.解斜三角形的基本问题:已知条件解法解的情况一边和两角(例如a,B,C)1.利用A+B+C=180,求A2.应用正弦定理求b,c 唯一解两边和夹角(例如a,b,C1.应用余弦定理求边c2.应用正弦定理求a,b中较短的边所对的角(该角一定是锐角)3.利用A+B+C=180,求第三个角. 唯一解 三边(例如a,b,c)法一:1、应用余弦定理先求任意两个角2.用A+B+C=180,求第三个角法二:1、应用余弦定理求a,b,c中最长边所对的角2、应用正弦定理求余下两个角中的任意一个(该角一定是锐角)3、利用A+B+C=180,求第三个角 唯一解   两边及其中一边的对角(例如a,b,A)此类问题首先要讨论解的情况1.应用正弦定理,求另一边的对角(即角B2、利用A+B+C=180,求第三个角3、应用正弦或余弦定理求第三边 两解、一解或无解  要点诠释:对于求解三角形的题目,一般都可有两种思路。但要注意方法的选择,同时要注意对解的讨论,从而舍掉不合理的解。比如下面例2两种方法不同,因此从不同角度来对解进行讨论。此外,有的时候还要对边角关系(例如,大边对大角)进行讨论从而舍掉不合理的解。要点三、利用正、余弦定理判断三角形的形状余弦定理、正弦定理与三角形中的三角变换结合在一起,运用三角函数的变换公式进行三角函数式的变形转化,在三角形中,解决有关含有边角关系的问题时,可以运用余弦定理完成边角互化,通过变形转化成三角形三边之间的关系,判断三角形的形状.判断三角形形状有两条思考路线:其一是化边为角,再进行三角恒等变换,求出三个角之间的关系式;其二是化角为边,再进行代数恒等变换,求出三条边之间的关系式,两种转化主要应用正弦定理和余弦定理.【典型例题】类型一:余弦定理的简单应用:12016  盐城校级期中)已知中,如果,那么此三角形最大角的余弦值是        【思路点拨】首先依据大边对大角确定要求的角,然后用余弦定理求解.【解析】 由正弦定理可知,令,所以边c对应的角最大    【总结升华】 1.中,若知道三边的长度或三边的关系式,求角的大小,一般用余弦定理;2.用余弦定理时,要注意公式中的边角位置关系.举一反三:【变式1(2015  广东)ABC的内角ABC的对边分别为abc.若a=2,且bc,则b=   A            B2           C                   D3答案由余弦定理得:a2=b2+c2-2bccosA,所以,即b2-6b+8=0,解得:b=2或b=4,因为b<c,所以b=2。故选:B.【变式2中,角所对的三边长分别为,若,求的各角的大小.答案根据余弦定理得:,∴同理可得【高清课堂:余弦定理376695 题一】【变式3中,若,则角等于(  .A.    B.     C.    D.  答案    类型二:余弦定理的综合应用22015  陕西高考)的内角所对的边分别为,向量平行.(I)(II)的面积.【答案】(I) (II) .【思路点拨】I)先利用可得,再利用正弦定理可得tan A的值,进而可得A的值;(II)由余弦定理可得c的值,进而利用三角形的面积公式可得ABC的面积.【解析】(I)因为,所以由正弦定理,得,从而由于所以(II)解法一:由余弦定理,得,而,即因为,所以面积为.解法二:由正弦定理,得从而又由,所以       所以面积为.总结升华本题考查平行向量的坐标运算、正弦定理、余弦定理与三角形的面积公式等基础知识。 举一反三:【变式12016  北京高考文)△ABC中,a=c,则=_________.答案  由正弦定理知,所以,则,所以,所以,即【变式2中,已知角所对的三边长分别为,若,求角【答案】根据余弦定理可得:      ∴由正弦定理得:.类型三:判断三角形的形状3△ABC中,已知sinA=2sinBcosC,  试判断该三角形的形状.【思路点拨】本题可以用正弦定理、余弦定理化简成单一的边的关系,然后判断.【解析】由正弦定理及余弦定理,得所以整理得,因为所以,因此ABC为等腰三角形【总结升华】已知三角形中的边角关系式,判断三角形的形状,有两条思路:其一化边为角,再进行三角恒等变换求出三个角之间的关系式;其二化角为边,再进行代数恒等变换求出三条边之间的关系式。举一反三:【变式1在△ABC中,若2cos Bsin Asin C,则△ABC的形状是______【答案】等腰三角形解析: 由题设和正、余弦定理得化简得a2b20,即ab.【高清课堂:余弦定理376695题六】【变式2 三角形ABC中满足下列条件 ;试判断三角形的形状。【答案】利用余弦定理得,化简得,所以三角形为等腰三角形  

    相关试卷

    知识讲解_余弦定理_提高练习题:

    这是一份知识讲解_余弦定理_提高练习题,共8页。

    知识讲解_正余弦定理在解三角形中的应用_基础练习题:

    这是一份知识讲解_正余弦定理在解三角形中的应用_基础练习题,共11页。

    知识讲解_随机抽样_基础练习题:

    这是一份知识讲解_随机抽样_基础练习题,共9页。

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map