所属成套资源:中考数学课时复习(含答案)
中考数学课时复习(含答案):19平面直角坐标系与点的坐标
展开这是一份中考数学课时复习(含答案):19平面直角坐标系与点的坐标,共11页。试卷主要包含了选择题等内容,欢迎下载使用。
19平面直角坐标系与点的坐标
一、选择题
1.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是( )
| A. | (2,10) | B. | (﹣2,0) | C. | (2,10)或(﹣2,0) | D. | (10,2)或(﹣2,0) |
考点: | 坐标与图形变化-旋转. |
分析: | 分顺时针旋转和逆时针旋转两种情况讨论解答即可. |
解答: | 解:∵点D(5,3)在边AB上, ∴BC=5,BD=5﹣3=2, ①若顺时针旋转,则点D′在x轴上,OD′=2, 所以,D′(﹣2,0), ②若逆时针旋转,则点D′到x轴的距离为10,到y轴的距离为2, 所以,D′(2,10), 综上所述,点D′的坐标为(2,10)或(﹣2,0). 故选C. |
点评: | 本题考查了坐标与图形变化﹣旋转,正方形的性质,难点在于分情况讨论. |
2.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?( )
A.2 B.3 C.4 D.5
分析:如图,作AH、CK、FP分别垂直BC、AB、DE于H、K、P.由AB=BC,△ABC≌△DEF,就可以得出△AKC≌△CHA≌△DPF,就可以得出结论.
解:如图,作AH、CK、FP分别垂直BC、AB、DE于H、K、P.
∴∠DPF=∠AKC=∠CHA=90°.
∵AB=BC,
∴∠BAC=∠BCA.
在△AKC和△CHA中。
∴△AKC≌△CHA(ASA),
∴KC=HA.
∵B、C两点在方程式y=﹣3的图形上,且A点的坐标为(﹣3,1),
∴AH=4.
∴KC=4.
∵△ABC≌△DEF,
∴∠BAC=∠EDF,AC=DF.
在△AKC和△DPF中,
∴△AKC≌△DPF(AAS),
∴KC=PF=4.
故选C.
点评:本题考查了坐标与图象的性质的运用,垂直的性质的运用,全等三角形的判定及性质的运用,等腰三角形的性质的运用,解答时证明三角形全等是关键.
3.如图为小杰使用手机内的通讯软件跟小智对话的纪录.
根据图中两人的对话纪录,若下列有一种走法能从邮局出发走到小杰家,则此走法为何?( )
A.向北直走700公尺,再向西直走100公尺
B.向北直走100公尺,再向东直走700公尺
C.向北直走300公尺,再向西直走400公尺
D.向北直走400公尺,再向东直走300公尺
分析:根据题意先画出图形,可得出AE=400,AB=CD=300,再得出DE=100,即可得出邮局出发走到小杰家的路径为:向北直走AB+AE=700公尺,再向西直走DE=100公尺.
解:依题意,OA=OC=400=AE,AB=CD=300,
DE=400﹣300=100,所以邮局出发走到小杰家的路径为,
向北直走AB+AE=700公尺,再向西直走DE=100公尺.
故选A.
点评:本题考查了坐标确定位置,根据题意画出图形是解题的关键.
4. 如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为( )
(第1题图)
| A. | 1 | B. | 1或5 | C. | 3 | D. | 5 | |
考点: | 直线与圆的位置关系;坐标与图形性质. | ||||||||
分析: | 平移分在y轴的左侧和y轴的右侧两种情况写出答案即可. | ||||||||
解答: | 解:当⊙P位于y轴的左侧且与y轴相切时,平移的距离为1; 当⊙P位于y轴的右侧且与y轴相切时,平移的距离为5. 故选B. | ||||||||
点评: | 本题考查了直线与圆的位置关系,解题的关键是了解当圆与直线相切时,点到圆心的距离等于圆的半径. | ||||||||
5. 在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是( )
| A. | (66,34) | B. | (67,33) | C. | (100,33) | D. | (99,34) |
考点: | 坐标确定位置;规律型:点的坐标. |
分析: | 根据走法,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,用100除以3,然后根据商和余数的情况确定出所处位置的横坐标与纵坐标即可. |
解答: | 解:由题意得,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位, ∵100÷3=33余1, ∴走完第100步,为第34个循环组的第1步, 所处位置的横坐标为33×3+1=100, 纵坐标为33×1=33, ∴棋子所处位置的坐标是(100,33). 故选C. |
点评: | 本题考查了坐标确定位置,点的坐标的规律变化,读懂题目信息并理解每3步为一个循环组依次循环是解题的关键. |
6.已知线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为( )
| A. | (1,2) | B. | (2,9) | C. | (5,3) | D. | (﹣9,﹣4) |
考点: | 坐标与图形变化-平移. |
分析: | 根据点A、C的坐标确定出平移规律,再求出点D的坐标即可. |
解答: | 解:∵点A(﹣1,4)的对应点为C(4,7), ∴平移规律为向右5个单位,向上3个单位, ∵点B(﹣4,﹣1), ∴点D的坐标为(0,2). 故选A. |
点评: | 本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减. |
7.若点M(x,y)满足(x+y)2=x2+y2﹣2,则点M所在象限是( )
A.第一象限或第三象限 B. 第二象限或第四象限
C.第一象限或第二象限 D. 不能确定
考点: | 点的坐标;完全平方公式. |
分析: | 利用完全平方公式展开得到xy=﹣1,再根据异号得负判断出x、y异号,然后根据各象限内点的坐标特征解答. |
解答: | 解:∵(x+y)2=x2+2xy+y2, ∴原式可化为xy=﹣1, ∴x、y异号, ∴点M(x,y)在第二象限或第四象限. 故选B. |
点评: | 本题考查了点的坐标,求出x、y异号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣). |
8.如图,将△ABC绕点C(0,1)旋转180°得到△A′B′C,设点A的坐标为(a,b),则点A′的坐标为( )
| A. | (﹣a,﹣b) | B. | (﹣a,﹣b﹣1) | C. | (﹣a,﹣b+1) | D. | (﹣a,﹣b+2) |
考点: | 坐标与图形变化-旋转. |
分析: | 设点A′的坐标是(x,y),根据旋转变换的对应点关于旋转中心对称,再根据中点公式列式求解即可. |
解答: | 解:根据题意,点A、A′关于点C对称, 设点A′的坐标是(x,y), 则=0,=1, 解得x=﹣a,y=﹣b+2, ∴点A的坐标是(﹣a,﹣b+2). 故选:D. |
点评: | 本题考查了利用旋转进行坐标与图形的变化,根据旋转的性质得出点A、A′关于点C成中心对称是解题的关键,还需注意中点公式的利用,也是容易出错的地方. |
二.填空题
1. 在平面直角坐标系中,点(﹣4,4)在第 二 象限.
考点: | 点的坐标. |
分析: | 根据各象限内点的坐标特征解答. |
解答: | 解:点(﹣4,4)在第二象限. 故答案为:二. |
点评: | 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣). |
2.如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是 (﹣4,3) .
考点: | 坐标与图形变化-旋转 |
分析: | 过点A作AB⊥x轴于B,过点A′作A′B′⊥x轴于B′,根据旋转的性质可得OA=OA′,利用同角的余角相等求出∠OAB=∠A′OB′,然后利用“角角边”证明△AOB和△OA′B′全等,根据全等三角形对应边相等可得OB′=AB,A′B′=OB,然后写出点A′的坐标即可. |
解答: | 解:如图,过点A作AB⊥x轴于B,过点A′作A′B′⊥x轴于B′, ∵OA绕坐标原点O逆时针旋转90°至OA′, ∴OA=OA′,∠AOA′=90°, ∵∠A′OB′+∠AOB=90°,∠AOB+∠OAB=90°, ∴∠OAB=∠A′OB′, 在△AOB和△OA′B′中, , ∴△AOB≌△OA′B′(AAS), ∴OB′=AB=4,A′B′=OB=3, ∴点A′的坐标为(﹣4,3). 故答案为:(﹣4,3). |
点评: | 本题考查了坐标与图形变化﹣旋转,熟记性质并作辅助线构造出全等三角形是解题的关键,也是本题的难点. |
3.如图,在平面直角坐标系中,点A坐标为(1,3),将线段OA向左平移2个单位长度,得到线段O′A′,则点A的对应点A′的坐标为 .
考点: | 作图-平移变换,平面直角坐标系点的坐标. |
分析: | 根据网格结构找出OA平移后的对应点O′、A′的位置,然后连接,写出平面直角坐标系中A′的坐标即可. |
解答: | 解:如图当线段OA向左平移2个单位长度后得到线段O′A′,A′的坐标为 故填 |
点评: | 本题考查了利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键. |
4. 点A(﹣2,3)关于x轴的对称点A′的坐标为 (﹣2,﹣3) .
考点: | 关于x轴、y轴对称的点的坐标 |
分析: | 让点A的横坐标不变,纵坐标互为相反数即可得到点A关于x轴的对称点A′的坐标. |
解答: | 解:∵点A(﹣2,3)关于x轴的对称点A′, ∴点A′的横坐标不变,为﹣2;纵坐标为﹣3, ∴点A关于x轴的对称点A′的坐标为(﹣2,﹣3). 故答案为:(﹣2,﹣3). |
点评: | 此题主要考查了关于x轴对称点的性质,用到的知识点为:两点关于x轴对称,横纵坐标不变,纵坐标互为相反数. |
三.解答题
1. 在边长为1的小正方形网格中,△AOB的顶点均在格点上,
(1)B点关于y轴的对称点坐标为 (﹣3,2) ;
(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;
(3)在(2)的条件下,A1的坐标为 (﹣2,3) .
(第1题图)
考点: | 作图-平移变换;关于x轴、y轴对称的点的坐标. |
分析: | (1)根据关于y轴对称的点的横坐标互为相反数,纵坐标相等解答; (2)根据网格结构找出点A、O、B向左平移后的对应点A1、O1、B1的位置,然后顺次连接即可; (3)根据平面直角坐标系写出坐标即可. |
解答: | 解:(1)B点关于y轴的对称点坐标为(﹣3,2); (2)△A1O1B1如图所示; (3)A1的坐标为(﹣2,3). 故答案为:(1)(﹣3,2);(3)(﹣2,3). |
点评: | 本题考查了利用平移变换作图,关于y轴对称点的坐标,熟练掌握网格结构准确找出对应点的位置是解题的关键. |
2.在棋盘中建立如图所示的直角坐标系,三颗棋子A,O,B的位置如图,它们的坐标分别是,(0,0),(1,0).
(1)如图2,添加棋C子,使四颗棋子A,O,B,C成为一个轴对称图形,请在图中画出该图形的对称轴;
(2)在其他格点位置添加一颗棋子P,使四颗棋子A,O,B,P成为轴对称图形,请直接写出棋子P的位置的坐标. (写出2个即可)
相关试卷
这是一份初中数学中考复习:19平面直角坐标系与一次函数、反比例函数(含答案),共7页。
这是一份中考数学一轮复习课时练习第9课时 平面直角坐标系与函数 (含答案),共4页。
这是一份中考数学一轮复习《函数概念与平面直角坐标系》课时跟踪练习(含答案),共7页。试卷主要包含了选择题,填空题,作图题,解答题等内容,欢迎下载使用。