所属成套资源:中考数学课时复习(含答案)
中考数学课时复习(含答案):51 梯 形
展开
这是一份中考数学课时复习(含答案):51 梯 形,共9页。试卷主要包含了选择题等内容,欢迎下载使用。
51梯 形一、选择题1. 如图,在等腰梯形ABCD中,AD∥BC,CA平分∠BCD,∠B=60°,若AD=3,则梯形ABCD的周长为( ) A.12B.15C.12D.15 考点:等腰梯形的性质.分析:过点A作AE∥CD,交BC于点E,可得出四边形ADCE是平行四边形,再根据等腰梯形的性质及平行线的性质得出∠AEB=∠BCD=60°,由三角形外角的定义求出∠EAC的度数,故可得出四边形ADEC是菱形,再由等边三角形的判定定理得出△ABE是等边三角形,由此可得出结论.解答:解:过点A作AE∥CD,交BC于点E,∵梯形ABCD是等腰梯形,∠B=60°,∴AD∥BC,∴四边形ADCE是平行四边形,∴∠AEB=∠BCD=60°,∵CA平分∠BCD,∴∠ACE=∠BCD=30°,∵∠AEB是△ACE的外角,∴∠AEB=∠ACE+∠EAC,即60°=30°+∠EAC,∴∠EAC=30°,∴AE=CE=3,∴四边形ADEC是菱形,∵△ABE中,∠B=∠AEB=60°,∴△ABE是等边三角形,∴AB=BE=AE=3,∴梯形ABCD的周长=AB+(BE+CE)+CD+AD=3+3+3+3+3=15.故选D.点评:本题考查的是等腰梯形的性质,根据题意作出辅助线,构造出平行四边形是解答此题的关键. 2.如图,梯形ABCD中,AD∥BC,DE∥AB,DE=DC,∠C=80°,则∠A等于( ) A.80°B.90°C.100°D.110° 考点:梯形;等腰三角形的性质;平行四边形的判定与性质.分析:根据等边对等角可得∠DEC=80°,再根据平行线的性质可得∠B=∠DEC=80°,∠A=180°﹣80°=100°.解答:解:∵DE=DC,∠C=80°,∴∠DEC=80°,∵AB∥DE,∴∠B=∠DEC=80°,∵AD∥BC,∴∠A=180°﹣80°=100°,故选:C.点评:此题主要考查了等腰三角形的性质,以及平行线的性质,关键是掌握两直线平行,同位角相等,同旁内角互补. 3.如图,梯形ABCD中,AD∥BC,E点在BC上,且AE⊥BC.若AB=10,BE=8,DE=6,则AD的长度为何?( )A.8 B.9 C.6 D.6分析:利用勾股定理列式求出AE,再根据两直线平行,内错角相等可得∠DAE=90°,然后利用勾股定理列式计算即可得解.解:∵AE⊥BC,∴∠AEB=90°,∵AB=10,BE=8,∴AE===6,∵AD∥BC,∴∠DAE=∠AEB=90°,∴AD== =6.故选C.点评:本题考查了梯形,勾股定理,是基础题,熟记定理并确定出所求的边所在的直角三角形是解题的关键.4.如图,梯形ABCD中,AD∥BC,∠B=∠ACD=90°,AB=2,DC=3,则△ABC与△DCA的面积比为( ) A.2:3B.2:5C.4:9D.: 考点:相似三角形的判定与性质.分析:先求出△CBA∽△ACD,求出=,COS∠ACB•COS∠DAC=,得出△ABC与△DCA的面积比=.解答:解:∵AD∥BC,∴∠ACB=∠DAC又∵∠B=∠ACD=90°,∴△CBA∽△ACD==,AB=2,DC=3,∴===,∴=,∴COS∠ACB==,COS∠DAC==∴•=×=,∴=,∵△ABC与△DCA的面积比=,∴△ABC与△DCA的面积比=,故选:C.点评:本题主要考查了三角形相似的判定及性质,解决本题的关键是明确△ABC与△DCA的面积比=. 5. 如图,AB是池塘两端,设计一方法测量AB的距离,取点C,连接AC、BC,再取它们的中点D、E,测得DE=15米,则AB=( )米.(第1题图) A.7.5B.15C.22.5D.30 考点:三角形中位线定理分析:根据三角形的中位线得出AB=2DE,代入即可求出答案.解答:解:∵D、E分别是AC、BC的中点,DE=15米,∴AB=2DE=30米,故选D.点评:本题考查了三角形的中位线的应用,注意:三角形的中位线平行于第三边,并且等于第三边的一半. 6.如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为( ) A.4米B.6米C.12米D.24米 考点:解直角三角形的应用-坡度坡角问题.分析:先根据坡度的定义得出BC的长,进而利用勾股定理得出AB的长.解答:解:在Rt△ABC中,∵=i=,AC=12米,∴BC=6米,根据勾股定理得:AB==6米,故选B.点评:此题考查了解直角三角形的应用﹣坡度坡角问题,勾股定理,难度适中.根据坡度的定义求出BC的长是解题的关键. 二.填空题1. 如图,在直角梯形ABCD中,AD∥BC,∠C=90°,∠A=120°,AD=2,BD平分∠ABC,则梯形ABCD的周长是 7+ .考点:直角梯形.分析:根据题意得出AB=AD,进而得出BD的长,再利用在直角三角形中30°所对的边等于斜边的一半,进而求出CD以及利用勾股定理求出BC的长,即可得出梯形ABCD的周长.解答:解:过点A作AE⊥BD于点E,∵AD∥BC,∠A=120°,∴∠ABC=60°,∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC=30°,∴∠ABE=∠ADE=30°,∴AB=AD,∴AE=AD=1,∴DE=,则BD=2,∵∠C=90°,∠DBC=30°,∴DC=BD=,∴BC===3,∴梯形ABCD的周长是:AB+AD+CD+BC=2+2++3=7+.故答案为:7+.点评:此题主要考查了直角梯形的性质以及勾股定理和直角三角形中30°所对的边等于斜边的一半等知识,得出∠DBC的度数是解题关键. 2.如图,若该图案是由8个全等的等腰梯形拼成的,则图中的∠1= 67.5° .(第1题图)考点:等腰梯形的性质;多边形内角与外角分析:首先求得正八边形的内角的度数,则∠1的度数是正八边形的度数的一半.解答:解:正八边形的内角和是:(8﹣2)×180°=1080°,则正八边形的内角是:1080÷8=135°,则∠1=×135°=67.5°.故答案是:67.5°.点评:本题考查了正多边形的内角和的计算,正确求得正八边形的内角的度数是关键. 3. 如图,△ABC的中位线DE=5cm,把△ABC沿DE折叠,使点A落在边BC上的点F处,若A、F两点间的距离是8cm,则△ABC的面积为 40 cm3.(第2题图)考点:翻折变换(折叠问题);三角形中位线定理分析:根据对称轴垂直平分对应点连线,可得AF即是△ABC的高,再由中位线的性质求出BC,继而可得△ABC的面积.解答:解:∵DE是△ABC的中位线,∴DE∥BC,BC=2DE=10cm;由折叠的性质可得:AF⊥DE,∴AF⊥BC,∴S△ABC=BC×AF=×10×8=40cm2.故答案为:40.点评:本题考查了翻折变换的性质及三角形的中位线定理,解答本题的关键是得出AF是△ABC的高. 三.解答题1. 如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBEF是菱形?为什么?(第1题图)考点:三角形的中位线、菱形的判定分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,然后根据两组对边分别平行的四边形是平行四边形证明;(2)根据邻边相等的平行四边形是菱形证明.(1)证明:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,又∵EF∥AB,∴四边形DBFE是平行四边形;(2)解答:当AB=BC时,四边形DBEF是菱形.理由如下:∵D是AB的中点,∴BD=AB,∵DE是△ABC的中位线,∴DE=BC,∵AB=BC,∴BD=DE,又∵四边形DBFE是平行四边形,∴四边形DBFE是菱形.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及菱形与平行四边形的关系,熟记性质与判定方法是解题的关键.
相关试卷
这是一份初中数学中考复习:51无理方程(含答案),共5页。
这是一份中考数学模拟汇编一35梯形,共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份中考数学模拟汇编二35梯形,共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。