高中数学人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理第1课时导学案及答案
展开A.24种B.9种 C.3种D.26种
2.将3个不同的小球放入4个盒子中,不同放法种数为( )
A.81B.64 C.14D.12
3.若x,y∈N,且1≤x≤3,x+y<7,则满足条件的不同的有序自然数对(x,y)的个数是( )
A.15B.12 C.5D.4
4.有不同的语文书9本,不同的数学书7本,不同的英语书5本,从中选出不属于同一学科的书2本,则不同的选法有( )
A.21种B.315种 C.153种D.143种
5.数独是源自18世纪瑞士的一种数学游戏.如图是数独的一个简化版,由3行3列9个单元格构成.玩该游戏时,需要将数字1,2,3(各3个)全部填入单元格,每个单元格填一个数字,要求每一行、每一列均有1,2,3这三个数字,则不同的填法有( )
A.12种B.24种 C.72种D.216种
6.为了进一步做好社区疫情防控工作,从6名医护人员中任意选出2人分别担任组长和副组长,则有 种不同的选法.
7.由1,2,3这三个数字抽出一部分或全部数字(没有重复)所组成的自然数有 个.
8.有一项活动,需从3位教师、8名男同学和5名女同学中选人参加.
(1)若只需1人参加,则有多少种不同的选法?
(2)若需教师、男同学、女同学各1人参加,则有多少种不同的选法?
9.某电视台连续播放6个广告,其中有3个不同的商业广告、2个不同的宣传广告和1个公益广告,要求最后播放的不能是商业广告,宣传广告与公益广告不能连续播放,2个宣传广告也不能连续播放,则有多少种不同的播放方式?
1.将3张不同的奥运会门票分给10名同学中的3人,每人1张,则不同分法的种数是( )
A.2 160B.720C.240D.120
2.从0,1,2,…,9这10个数字中,任取两个不同数字作为平面直角坐标系中点(a,b)的坐标,能够确定不在x轴上的点的个数是( )
A.100B.90C.81D.72
3.把10个苹果分成三堆,要求每堆至少1个,至多5个,则不同的分法共有( )
A.4种B.5种C.6种D.7种
4.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为( )
A.42B.30C.20D.12
5.某城市的电话号码,由六位升为七位(首位数字均不为零),则该城市可增加的电话部数是( )
A.9×8×7×6×5×4×3B.8×96
C.9×106D.81×105
6.某县总工会利用业余时间开设太极、书法、绘画三个培训班,甲、乙、丙、丁四人报名参加,每人只报名参加一项,且甲、乙不参加同一项,则不同的报名方法种数为 .
7.已知集合M={1,2,3,4},集合A,B为集合M的非空子集,若对∀x∈A,y∈B,x
9.某文艺小组有20人,其中会唱歌的有14人,会跳舞的有10人,从中选出会唱歌与会跳舞的各1人参加演出,且既会唱歌又会跳舞的至多选1人,有多少种不同的选法?
10.在3 000到8 000之间有多少个无重复数字的奇数?
11.如图是某校的校园设施平面图,现有不同的颜色作为各区域的底色,为了便于区分,要求相邻区域不能使用同一种颜色.若有6种不同的颜色可选,求有多少种不同的着色方案.
操
场
宿舍区
餐厅
教学区
人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理优质导学案及答案: 这是一份人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理优质导学案及答案,共8页。学案主要包含了学习目标,自主学习,小试牛刀,经典例题,跟踪训练,当堂达标,课堂小结,参考答案等内容,欢迎下载使用。
人教A版高考数学一轮总复习第10章第1节分类加法计数原理与分步乘法计数原理、排列与组合课时学案: 这是一份人教A版高考数学一轮总复习第10章第1节分类加法计数原理与分步乘法计数原理、排列与组合课时学案,共11页。学案主要包含了教材概念·结论·性质重现,基本技能·思想·活动体验等内容,欢迎下载使用。
高中数学人教A版 (2019)选择性必修 第三册第六章 计数原理6.1 分类加法计数原理与分步乘法计数原理学案: 这是一份高中数学人教A版 (2019)选择性必修 第三册第六章 计数原理6.1 分类加法计数原理与分步乘法计数原理学案,共10页。学案主要包含了分类加法计数原理,分步乘法计数原理等内容,欢迎下载使用。