![八年级上册人教版第十二章第二节全等三角形判定一(SSS,SAS)(基础)知识讲解学案第1页](http://img-preview.51jiaoxi.com/2/3/12617905/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![八年级上册人教版第十二章第二节全等三角形判定一(SSS,SAS)(基础)知识讲解学案第2页](http://img-preview.51jiaoxi.com/2/3/12617905/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学人教版八年级上册12.2 三角形全等的判定学案
展开
这是一份初中数学人教版八年级上册12.2 三角形全等的判定学案,共5页。学案主要包含了学习目标,要点梳理,典型例题,思路点拨,答案与解析,总结升华等内容,欢迎下载使用。
全等三角形判定一(SSS,SAS)(基础) 【学习目标】1.理解和掌握全等三角形判定方法1——“边边边”,和判定方法2——“边角边”; 2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等. 【要点梳理】 要点一、全等三角形判定1——“边边边” 全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS”).要点诠释:如图,如果=AB,=AC,=BC,则△ABC≌△. 要点二、全等三角形判定2——“边角边”1. 全等三角形判定2——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).要点诠释:如图,如果AB = ,∠A=∠,AC = ,则△ABC≌△. 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC与△ABD中,AB=AB,AC=AD,∠B=∠B,但△ABC与△ABD不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.
【典型例题】类型一、全等三角形的判定1——“边边边”1、已知:如图,△RPQ中,RP=RQ,M为PQ的中点.求证:RM平分∠PRQ.【思路点拨】由中点的定义得PM=QM,RM为公共边,则可由SSS定理证明全等.【答案与解析】证明:∵M为PQ的中点(已知),∴PM=QM在△RPM和△RQM中,∴△RPM≌△RQM(SSS).∴ ∠PRM=∠QRM(全等三角形对应角相等).即RM平分∠PRQ.【总结升华】在寻找三角形全等的条件时有的可以从图中直接找到,如:公共边、公共角、对顶角等条件隐含在题目或图形之中. 把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的性质和判定.举一反三: 【变式】已知:如图,AD=BC,AC=BD.试证明:∠CAD=∠DBC.【答案】证明:连接DC, 在△ACD与△BDC中∴△ACD≌△BDC(SSS)∴∠CAD=∠DBC(全等三角形对应角相等)类型二、全等三角形的判定2——“边角边”
2、已知:如图,AB=AD,AC=AE,∠1=∠2.求证:BC=DE.【思路点拨】由条件AB=AD,AC=AE,需要找夹角∠BAC与∠DAE,夹角可由等量代换证得相等.【答案与解析】证明: ∵∠1=∠2 ∴∠1+∠CAD=∠2+∠CAD,即∠BAC=∠DAE 在△ABC和△ADE中 ∴△ABC≌△ADE(SAS) ∴BC=DE(全等三角形对应边相等)【总结升华】证明角等的方法之一:利用等式的性质,等量加等量,还是等量.3、如图,将两个一大、一小的等腰直角三角尺拼接 (A、B、D三点共线,AB=CB,EB=DB,∠ABC=∠EBD=90°),连接AE、CD,试确定AE与CD的位置与数量关系,并证明你的结论.【答案】AE=CD,并且AE⊥CD 证明:延长AE交CD于F, ∵△ABC和△DBE是等腰直角三角形 ∴AB=BC,BD=BE 在△ABE和△CBD中 ∴△ABE≌△CBD(SAS) ∴AE=CD,∠1=∠2 又∵∠1+∠3=90°,∠3=∠4(对顶角相等) ∴∠2+∠4=90°,即∠AFC=90° ∴AE⊥CD【总结升华】通过观察,我们也可以把△CBD看作是由△ABE绕着B点顺时针旋转90°得到的.尝试着从变换的角度看待全等.举一反三:【变式】已知:如图,AP平分∠BAC,且AB=AC,点Q在PA上,求证:QC=QB【答案】证明:∵ AP平分∠BAC
∴∠BAP=∠CAP
在△ABQ与△ACQ中
∵
∴△ABQ≌△ACQ(SAS) ∴ QC=QB类型三、全等三角形判定的实际应用 4、“三月三,放风筝”.下图是小明制作的风筝,他根据DE=DF,EH=FH,不用度量,就知道∠DEH=∠DFH.请你用所学的知识证明.【答案与解析】证明:在△DEH和△DFH中, ∴△DEH≌△DFH(SSS) ∴∠DEH=∠DFH.【总结升华】证明△DEH≌△DFH,就可以得到∠DEH=∠DFH,我们要善于从实际问题中抽离出来数学模型,这道题用“SSS”定理就能解决问题.举一反三:【变式】工人师傅经常利用角尺平分一个任意角,如图所示,∠AOB是一个任意角,在边OA,边OB上分别取OD=OE,移动角尺,使角尺两边相同的刻度分别与D、E重合,这时过角尺顶点P的射线OP就是∠AOB的平分线,你能先说明△OPE与△OPD全等,再说明OP平分∠AOB吗?【答案】证明: 在△OPE与△OPD中∵∴ △OPE≌△OPD (SSS)∴ ∠EOP=∠DOP(全等三角形对应角相等)∴ OP平分∠AOB.
相关学案
这是一份初中数学人教版八年级上册12.1 全等三角形学案设计,共12页。
这是一份人教版八年级上册12.2 三角形全等的判定学案,共6页。学案主要包含了学习目标,要点梳理,典型例题,思路点拨,答案与解析,总结升华等内容,欢迎下载使用。
这是一份初中数学人教版八年级上册12.2 三角形全等的判定学案及答案,共5页。学案主要包含了学习目标,要点梳理,典型例题,答案与解析,总结升华,思路点拨等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)