人教版六年级下册圆柱的表面积优质第3课时学案设计
展开教材第21页例3。
教学目标
1.理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法。
2.经历圆柱侧面积和表面积的计算公式的推导过程,体验利用旧知识迁移学习新知识的学习方法。[来源%^:*中国~教#育出版网]
3.感悟数学知识的魅力,体会数学知识之间的相互联系。
教学重难点
重点:掌握求圆柱侧面积和表面积的计算方法并能正确计算。
难点:明确求圆柱物体的表面积实际是求哪几个面的面积和。
教法与学法[来源#:中教网~@%^]
教法:提出问题,引导探究。
学法:实践感悟,知识迁移。
教学准备
多媒体课件。[中^国教*育%出#~版网]
[www.zz^s%~@tep.#cm]课题
圆柱的表面积(1)
课型
新授课
设计说明
本节课教学是在学生对圆柱特征已有初步认识,并且掌握了长方体、正方体表面积计算方法的基础上进行的。根据学生的认知基础,上课伊始,通过复习长方体表面积的相关知识,激活学生已有的知识,使学生由长方体表面积的含义联想到圆柱表面积的含义,对圆柱表面积有了初步的理解,为进一步探究圆柱表面积的求法作好铺垫。在推导圆柱体的侧面积计算公式时,引导学生回顾圆柱的侧面展开图与圆柱的关系,在此基础上再进行观察、讨论。用已学过的长方形面积公式自然地推导出圆柱体的侧面积公式,从而使学生认识到立体转平面,形变量不变的辩证关系,培养学生的观察分析能力。
课时安排
1课时
教学环节
导案
学案
达标检测
一、引入新课。
1.我们学过计算哪些图形的表面积?它们的表面积又是怎样计算的呢?
指名学生回答。
2.圆柱的表面积指的是什么?它又该怎样计算呢?
(板书课题:圆柱的表面积)。
学生回忆已学过图形的表面积的计算方法。
长方体的表面积=(长×宽+长×高+宽×高)×2
正方体的表面积=棱长×棱长×6
1.一个圆柱的底面周长是12.56dm,高是5dm,它的侧面积是多少平方分米?
答案:12.56×5=62.8(dm2)
答:它的侧面积是62.8平方分米。
2.一个圆柱的底面直径是2分米,高是4分米,它的侧面积和表面积分别是多少平方分米?
答案:侧面积:3.14×2×4=25.12(dm2)
表面积:3.14×(2÷2)2×2+25.12
=31.4(dm2)
答:它的侧面积是25.12dm2,表面积是31.4dm2。
二、自主探索,体验新知。
1.表面积的含义。
学生观察圆柱体模型,教师引导学生逐步理解圆柱的表面积就是圆柱两个底面的面积和侧面面积之和。
2.探究圆柱侧面积的计算方法。
(1)回顾圆柱的侧面展开图与圆柱的关系。
教师画出图形帮学生回顾,为下面推导公式打下基础。
(2)怎样计算圆柱的侧面积?
小组交流,教师巡视、指导。
指名回答。
结合学生的回答。
老师归纳板书:
长方形面积= 长 × 宽
↓ ↓ ↓
圆柱的侧面积=底面周长×高
用字母表示圆柱的侧面积的公式是:
S侧=πdh或S侧=2πrh
强调:公式中字母的含义。
总结提升:通过转化,我们将一个封闭的曲面变为长方形。在此基础上,我们发现了圆柱侧面与长方形的关系,发现了圆柱体侧面积的计算方法。
3.圆柱的表面积的计算方法。
(1)圆柱的表面积由哪几个部分组成?
(2)怎样计算圆柱的表面积呢?试着自己推导公式。
归纳:由圆柱的表面展开图推导可知:圆柱的表面积=圆柱的侧面积+两个底面的面积,用字母表示是S表=2πrh+2πr2。
1.学生结合模型,理解圆柱体表面积的含义。
2.(1)学生回顾圆柱的侧面展开图与圆柱的关系。
(2)学生结合圆柱侧面展开图,合作推导侧面积的计算方法。
3.学生跟随老师的思路学习推导圆柱表面积的计算方法。
三、巩固练习。
1.完成教材第21页“做一做”。
2.完成教材第23页第2题。
独立完成后全班交流订正。
教学过程中老师的疑问:
四、课堂总结。
1.说一说本节课的收获。
2.布置作业。
学生谈本节课的内容。
教学板书
教学反思
本节课的教学,要让学生明确圆柱侧面积的含义,知道侧面积的计算方法,会用侧面积的计算公式进行计算,更重要的是要引导学生经历探究圆柱侧面积计算公式的过程,遵循由“观察物体→建立表象→抽象图形→建立模型(空间观念)”的认知规律,通过实践、操作、讨论、交流等活动,促进学生对数学的理解。
小学数学人教版六年级下册圆柱的表面积第三课时导学案及答案: 这是一份小学数学人教版六年级下册圆柱的表面积第三课时导学案及答案,共5页。学案主要包含了引入新课,自主探索,体验新知,巩固练习,课堂总结,教学板书,教学反思等内容,欢迎下载使用。
2021学年圆柱的表面积优质第2课时导学案: 这是一份2021学年圆柱的表面积优质第2课时导学案,共3页。学案主要包含了复习旧知,探究新知,巩固练习,课堂总结等内容,欢迎下载使用。
小学人教版圆柱的表面积优秀第4课时学案设计: 这是一份小学人教版圆柱的表面积优秀第4课时学案设计,共4页。