终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第2讲 第2课时 高效演练 分层突破学案

    立即下载
    加入资料篮
    2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数    第2讲 第2课时 高效演练 分层突破学案第1页
    2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数    第2讲 第2课时 高效演练 分层突破学案第2页
    还剩2页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第2讲 第2课时 高效演练 分层突破学案

    展开

    这是一份2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第2讲 第2课时 高效演练 分层突破学案,共4页。
    1.下列函数中,与函数y=-3|x|的奇偶性相同,且在(-∞,0)上单调性也相同的是( )
    A.y=-eq \f(1,x) B.y=lg2|x|
    C.y=1-x2 D.y=x3-1
    解析:选C.函数y=-3|x|为偶函数,在(-∞,0)上为增函数,选项A的函数为奇函数,不符合要求;选项B的函数是偶函数,但其单调性不符合要求;选项D的函数为非奇非偶函数,不符合要求;只有选项C符合要求.
    2.已知f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+m,则f(-2)=( )
    A.-3 B.-eq \f(5,4)
    C.eq \f(5,4) D.3
    解析:选A.由f(x)为R上的奇函数,知f(0)=0,即f(0)=20+m=0,解得m=-1,则f(-2)=-f(2)=-(22-1)=-3.
    3.已知定义域为R的奇函数f(x)满足feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)+x))=feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)-x)),且当0≤x≤1时,f(x)=x3,则feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(5,2)))=( )
    A.-eq \f(27,8) B.-eq \f(1,8)
    C.eq \f(1,8) D.eq \f(27,8)
    解析:选B.因为feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)+x))=feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)-x)),所以feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(5,2)))=feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)+1))=feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)-1))=feq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,2))),又因为函数为奇函数,所以feq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,2)))=-feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))=-eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))eq \s\up12(3)=-eq \f(1,8).
    4.已知定义域为[a-4,2a-2]的奇函数f(x)=2 018x3-sin x+b+2,则f(a)+f(b)的值为( )
    A.0 B.1
    C.2 D.不能确定
    解析:选A.依题意得a-4+2a-2=0,所以a=2.又f(x)为奇函数,故b+2=0,
    所以b=-2,所以f(a)+f(b)=f(2)+f(-2)=0.
    5.已知函数f(x)=eq \f(2|x|+x3+1,2|x|+1)的最大值为M,最小值为m,则M+m等于( )
    A.0 B.2
    C.4 D.8
    解析:选B.f(x)=eq \f(2|x|+x3+1,2|x|+1)=1+eq \f(x3,2|x|+1).设g(x)=eq \f(x3,2|x|+1),因为g(x)定义域为R,关于原点对称,且g(-x)=-g(x),所以g(x)为奇函数,所以g(x)max+g(x)min=0.因为M=f(x)max=1+g(x)max,m=f(x)min=1+g(x)min,所以M+m=1+g(x)max+1+g(x)min=2.
    6.已知f(x)是奇函数,g(x)是偶函数,且f(-1)+g(1)=2,f(1)+g(-1)=4,则g(1)等于 .
    解析:f(-1)+g(1)=2,即-f(1)+g(1)=2①,
    f(1)+g(-1)=4,即f(1)+g(1)=4②,
    由①②得,2g(1)=6,即g(1)=3.
    答案:3
    7.设函数f(x)是定义在R上周期为2的偶函数,当x∈[0,1]时,f(x)=x+1,则feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)))= .
    解析:依题意得,f(2+x)=f(x),f(-x)=f(x),
    则feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)))=feq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,2)))=feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))=eq \f(1,2)+1=eq \f(3,2).
    答案:eq \f(3,2)
    8.设函数f(x)是定义在R上的奇函数,且f(x)=eq \b\lc\{(\a\vs4\al\c1(lg3(x+1),x≥0,,g(x),x1,f(5)=a2-2a-4,则实数a的取值范围是( )
    A.(-1,3) B.(-∞,-1)∪(3,+∞)
    C.(-3,1) D.(-∞,-3)∪(1,+∞)
    解析:选A.由f(x+1)=-f(x-1),可得f(x+2)=-f(x),则f(x+4)=f(x),故函数f(x)的周期为4,则f(5)=f(1)=a2-2a-4,又因为f(x)是定义在R上的奇函数,f(-1)>1,所以f(1)g(-1)
    3.已知函数f(x)=eq \b\lc\{(\a\vs4\al\c1(-x2+2x,x>0,,0,x=0,,x2+mx,x

    相关学案

    2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第7讲 高效演练 分层突破学案:

    这是一份2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第7讲 高效演练 分层突破学案,共6页。

    2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第4讲 高效演练 分层突破学案:

    这是一份2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第4讲 高效演练 分层突破学案,共4页。

    2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第1讲 高效演练 分层突破学案:

    这是一份2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第1讲 高效演练 分层突破学案,共4页。

    • 精品推荐
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map