年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第9讲 高效演练 分层突破学案

    立即下载
    加入资料篮
    2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数    第9讲 高效演练 分层突破学案第1页
    2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数    第9讲 高效演练 分层突破学案第2页
    2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数    第9讲 高效演练 分层突破学案第3页
    还剩3页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第9讲 高效演练 分层突破学案

    展开

    这是一份2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第9讲 高效演练 分层突破学案,共6页。
    1.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y与投放市场的月数x之间关系的是( )
    A.y=100x B.y=50x2-50x+100
    C.y=50×2x D.y=100lg2x+100
    解析:选C.根据函数模型的增长差异和题目中的数据可知,应为指数型函数模型,代入数据验证即可得.故选C.
    2.已知正方形ABCD的边长为4,动点P从B点开始沿折线BCDA向A点运动.设点P运动的路程为x,△ABP的面积为S,则函数S=f(x)的图象是( )
    解析:选D.依题意知当0≤x≤4时,f(x)=2x;当40),则y2=nx.当x=10时,y2=10n=8,所以n=eq \f(4,5).所以两项费用之和为y=y1+y2=eq \f(20,x)+eq \f(4x,5)≥2eq \r(\f(20,x)·\f(4x,5))=8,当且仅当eq \f(20,x)=eq \f(4x,5),即x=5时取等号.所以要使这两项费用之和最小,仓库应建在离车站5千米处.故选A.
    4.某高校为提升科研能力,计划逐年加大科研经费投入.若该高校2017年全年投入科研经费1 300万元,在此基础上,每年投入的科研经费比上一年增长12%,则该高校全年投入的科研经费开始超过2 000万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)( )
    A.2020年 B.2021年
    C.2022年 D.2023年
    解析:选B.若2018年是第一年,则第n年科研费为1 300×1.12n,由1 300×1.12n>2 000,可得lg 1.3+n lg 1.12>lg 2,得n×0.05>0.19,n>3.8,n≥4,即4年后,到2021年科研经费超过2 000万元.故选B.
    5.(2019·高考北京卷)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m2-m1=eq \f(5,2)lgeq \f(E1,E2),其中星等为mk的星的亮度为Ek(k=1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( )
    A. 1010.1 B. 10.1
    C. lg 10.1 D. 10-10.1
    解析:选A.根据题意,设太阳的星等与亮度分别为m1与E1,天狼星的星等与亮度分别为m2与E2,则由已知条件可知m1=-26.7,m2=-1.45,根据两颗星的星等与亮度满足m2-m1=eq \f(5,2)lg eq \f(E1,E2),把m1与m2的值分别代入上式得,-1.45-(-26.7)=eq \f(5,2)lgeq \f(E1,E2),得lg eq \f(E1,E2)=10.1,所以eq \f(E1,E2)=1010.1,故选A.
    6.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.
    注:“累计里程”指汽车从出厂开始累计行驶的路程.
    在这段时间内,该车每100千米平均耗油量为 升.
    解析:因为每次都把油箱加满,第二次加了48升油,说明这段时间总耗油量为48升,而行驶的路程为35 600-35 000=600(千米),故每100千米平均耗油量为48÷6=8(升).
    答案:8
    7.李冶(1192-1279),真定栾城(今河北省石家庄市)人,金元时期的数学家、诗人,晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径、正方形的边长等.其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为13.75亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是 步、 步.(注:240平方步为1亩,圆周率按3近似计算)
    解析:设圆池的半径为r步,则方田的边长为(2r+40)步,由题意,得(2r+40)2-3r2=13.75×240,解得r=10或r=-170(舍),所以圆池的直径为20步,方田的边长为60步.
    答案:20 60
    8.一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x(x∈N*)件.当x≤20时,年销售总收入为(33x-x2)万元;当x>20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y万元,则y(万元)与x(件)的函数关系式为 ,该工厂的年产量为 件时,所得年利润最大(年利润=年销售总收入-年总投资).
    解析:当0

    相关学案

    2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第6讲 高效演练 分层突破学案:

    这是一份2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第6讲 高效演练 分层突破学案,共4页。

    2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第7讲 高效演练 分层突破学案:

    这是一份2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第7讲 高效演练 分层突破学案,共6页。

    2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第4讲 高效演练 分层突破学案:

    这是一份2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第4讲 高效演练 分层突破学案,共4页。

    文档详情页底部广告位
    • 精品推荐
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map