年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2023届高考一轮复习讲义(文科)第三章 导数及其应用 第4讲 第2课时 利用导数探究函数零点问题学案

    2023届高考一轮复习讲义(文科)第三章 导数及其应用    第4讲 第2课时 利用导数探究函数零点问题学案第1页
    2023届高考一轮复习讲义(文科)第三章 导数及其应用    第4讲 第2课时 利用导数探究函数零点问题学案第2页
    2023届高考一轮复习讲义(文科)第三章 导数及其应用    第4讲 第2课时 利用导数探究函数零点问题学案第3页
    还剩6页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023届高考一轮复习讲义(文科)第三章 导数及其应用 第4讲 第2课时 利用导数探究函数零点问题学案

    展开

    这是一份2023届高考一轮复习讲义(文科)第三章 导数及其应用 第4讲 第2课时 利用导数探究函数零点问题学案,共9页。

    判断、证明或讨论函数零点个数(师生共研)
    (2019·高考全国卷Ⅰ节选)已知函数f(x)=2sin x-xcs x-x,f′(x)为f(x)的导数.证明:f′(x)在区间(0,π)存在唯一零点.
    【证明】 设g(x)=f′(x),则g(x)=cs x+xsin x-1,g′(x)=xcs x.
    当x∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2)))时,g′(x)>0;当x∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2),π))时,g′(x)0,g(π)=-2,故g(x)在(0,π)存在唯一零点.
    所以f′(x)在(0,π)存在唯一零点.
    eq \a\vs4\al()
    利用导数确定函数零点或方程根个数的常用方法
    (1)构建函数g(x)(要求g′(x)易求,g′(x)=0可解),转化确定g(x)的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出g(x)的图象草图,数形结合求解函数零点的个数.
    (2)利用零点存在性定理:先用该定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间上零点的个数.
    已知f(x)=eq \f(1,x)+eq \f(ex,e)-3,F(x)=ln x+eq \f(ex,e)-3x+2.
    (1)判断f(x)在(0,+∞)上的单调性;
    (2)判断函数F(x)在(0,+∞)上零点的个数.
    解:(1)f′(x)=-eq \f(1,x2)+eq \f(ex,e)=eq \f(x2ex-e,ex2),
    令f′(x)>0,解得x>1,令f′(x)

    相关学案

    高考数学统考一轮复习第3章导数及其应用命题探秘1第3课时利用导数解决函数的零点问题学案:

    这是一份高考数学统考一轮复习第3章导数及其应用命题探秘1第3课时利用导数解决函数的零点问题学案,共6页。

    人教版高考数学一轮复习第3章导数及其应用第2节第5课时利用导数解决函数的零点问题学案理含解析:

    这是一份人教版高考数学一轮复习第3章导数及其应用第2节第5课时利用导数解决函数的零点问题学案理含解析,共5页。

    2023届高考一轮复习讲义(理科)第三章 导数及其应用 第2讲 第5课时 利用导数探究函数的零点问题学案:

    这是一份2023届高考一轮复习讲义(理科)第三章 导数及其应用 第2讲 第5课时 利用导数探究函数的零点问题学案,共11页。

    • 精品推荐
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map