


2023届高考一轮复习讲义(文科)第四章 三角函数、解三角形 第3讲 第2课时 简单的三角恒等变换学案
展开
这是一份2023届高考一轮复习讲义(文科)第四章 三角函数、解三角形 第3讲 第2课时 简单的三角恒等变换学案,共10页。
三角函数式的化简(师生共研)
化简:(1)sin(α+β)cs(γ-β)-cs(β+α)sin(β-γ)= ;
(2)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,tan \f(α,2))-tan \f(α,2)))·eq \b\lc\(\rc\)(\a\vs4\al\c1(1+tan α·tan \f(α,2)))= .
【解析】 (1)sin(α+β)cs(γ-β)-cs(β+α)sin(β-γ)
=sin(α+β)cs(β-γ)-cs(α+β)sin(β-γ)
=sin[(α+β)-(β-γ)]=sin(α+γ).
(2)原式=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(cs \f(α,2),sin \f(α,2))-\f(sin \f(α,2),cs \f(α,2))))·eq \b\lc\(\rc\)(\a\vs4\al\c1(1+\f(sin α,cs α)·\f(sin \f(α,2),cs \f(α,2))))
=eq \f(cs2\f(α,2)-sin2\f(α,2),sin \f(α,2)cs \f(α,2))·eq \f(cs αcs \f(α,2)+sin αsin \f(α,2),cs αcs \f(α,2))
=eq \f(2cs α,sin α)·eq \f(cs \f(α,2),cs αcs \f(α,2))=eq \f(2,sin α).
【答案】 (1)sin(α+γ) (2)eq \f(2,sin α)
eq \a\vs4\al()
(1)三角函数式的化简要遵循“三看”原则
(2)三角函数式化简的方法
弦切互化,异名化同名,异角化同角,降幂或升幂.
在三角函数式的化简中“次降角升”和“次升角降”是基本的规律,根号中含有三角函数式时,一般需要升次.
1.(2020·长沙模拟)化简:eq \f(2sin(π-α)+sin 2α,cs2\f(α,2))= .
解析:eq \f(2sin(π-α)+sin 2α,cs2\f(α,2))=eq \f(2sin α+2sin αcs α,\f(1,2)(1+cs α))=
eq \f(4sin α(1+cs α),1+cs α)=4sin α.
答案:4sin α
2.化简:eq \f(2cs4x-2cs2x+\f(1,2),2tan \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)-x))sin2\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)+x))).
解:原式=eq \f(-2sin2xcs2x+\f(1,2),\f(2sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)-x))cs2\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)-x)),cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)-x))))
=eq \f(\f(1,2)(1-sin22x),2sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)-x))cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)-x)))
=eq \f(\f(1,2)cs22x,sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-2x)))
=eq \f(1,2)cs 2x.
三角函数式的求值(多维探究)
角度一 给角求值
计算eq \f(2cs 10°-2\r(3)cs(-100°),\r(1-sin 10°))= .
【解析】 eq \f(2cs 10°-2\r(3)cs(-100°),\r(1-sin 10°))
=eq \f(2cs 10°+2\r(3)sin 10°,\r(1-sin 10°))
=eq \f(4\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)cs 10°+\f(\r(3),2)sin 10°)),\r(1-2sin 5°cs 5°))=eq \f(4cs 50°,cs 5°-sin 5°)
=eq \f(4cs 50°,\r(2)cs 50°)=2eq \r(2).
【答案】 2eq \r(2)
角度二 给值求值
已知α,β为锐角,tan α=eq \f(4,3),cs(α+β)=-eq \f(\r(5),5).
(1)求cs 2α的值;
(2)求tan(α-β)的值.
【解】 (1)因为tan α=eq \f(4,3),tan α=eq \f(sin α,cs α),所以sin α=eq \f(4,3)cs α.
因为sin2 α+cs2 α=1,所以cs2 α=eq \f(9,25),
因此,cs 2α=2cs2 α-1=-eq \f(7,25).
(2)因为α,β为锐角,所以α+β∈(0,π).
又因为cs(α+β)=-eq \f(\r(5),5),
所以sin(α+β)=eq \r(1-cs2(α+β))=eq \f(2\r(5),5),
因此tan(α+β)=-2.
因为tan α=eq \f(4,3),所以tan 2α=eq \f(2tan α,1-tan2 α)=-eq \f(24,7),
因此,tan(α-β)=tan[2α-(α+β)]=eq \f(tan 2α-tan(α+β),1+tan 2αtan(α+β))=-eq \f(2,11).
角度三 给值求角
(一题多解)在平面直角坐标系xOy中,锐角α,β的顶点为坐标原点O,始边为x轴的非负半轴,终边与单位圆O的交点分别为P,Q.已知点P的横坐标为eq \f(2\r(7),7),点Q的纵坐标为eq \f(3\r(3),14),则2α-β的值为 .
【解析】 法一:由已知可知cs α=eq \f(2\r(7),7),sin β=eq \f(3\r(3),14).
又α,β为锐角,所以sin α=eq \f(\r(21),7),cs β=eq \f(13,14).
因此cs 2α=2cs2α-1=eq \f(1,7),sin 2α=2sin αcs α=eq \f(4\r(3),7),
所以sin(2α-β)=eq \f(4\r(3),7)×eq \f(13,14)-eq \f(1,7)×eq \f(3\r(3),14)=eq \f(\r(3),2).
因为α为锐角,所以0<2α<π.
又cs 2α>0,所以0<2α<eq \f(π,2),
又β为锐角,所以-eq \f(π,2)<2α-β<eq \f(π,2),
又sin(2α-β)=eq \f(\r(3),2),所以2α-β=eq \f(π,3).
法二:同法一得,cs β=eq \f(13,14),sin α=eq \f(\r(21),7).
因为α,β为锐角,所以α-β∈eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,2),\f(π,2))).
所以sin(α-β)=sin αcs β-cs αsin β=eq \f(\r(21),7)×eq \f(13,14)-eq \f(2\r(7),7)×eq \f(3\r(3),14)=eq \f(\r(21),14).
所以sin(α-β)>0,故α-β∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2))),
故cs(α-β)=eq \r(1-sin2(α-β))=eq \r(1-\b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(21),14)))\s\up12(2))=eq \f(5\r(7),14).
又α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2))),所以2α-β=α+(α-β)∈(0,π).
所以cs(2α-β)=cs[α+(α-β)]=cs αcs(α-β)-sin α·sin(α-β)=eq \f(2\r(7),7)×eq \f(5\r(7),14)-eq \f(\r(21),7)×eq \f(\r(21),14)=eq \f(1,2).
所以2α-β=eq \f(π,3).
【答案】 eq \f(π,3)
eq \a\vs4\al()
三角函数求值的3种情况
1.计算:eq \f(4tan\f(π,12),3tan2\f(π,12)-3)=( )
A.eq \f(2\r(3),3) B.-eq \f(2\r(3),3)
C.eq \f(2\r(3),9) D.-eq \f(2\r(3),9)
解析:选D.原式=-eq \f(2,3)·eq \f(2tan\f(π,12),1-tan2\f(π,12))=-eq \f(2,3)taneq \f(π,6)=-eq \f(2,3)×eq \f(\r(3),3)=-eq \f(2\r(3),9).
2.已知taneq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,4)))=eq \f(1,7),且α为第二象限角,若β=eq \f(π,8),则sin(α-2β)cs 2β-cs(α-2β)sin 2β=( )
A.-eq \f(3,5) B.eq \f(3,5)
C.-eq \f(4,5) D.eq \f(4,5)
解析:选D.taneq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,4)))=eq \f(1+tan α,1-tan α)=eq \f(1,7),所以tan α=-eq \f(3,4),又α为第二象限角,所以cs α=-eq \f(4,5),所以sin(α-2β)·cs 2β-cs(α-2β)sin 2β=sin(α-4β)=sineq \b\lc\(\rc\)(\a\vs4\al\c1(α-\f(π,2)))=-cs α=eq \f(4,5),故选D.
3.(2020·湖南长郡中学模拟改编)若α,β为锐角,且sin α=eq \f(\r(5),5),sin β=eq \f(\r(10),10),则cs(α+β)= ,α+β= .
解析:因为α,β为锐角,sin α=eq \f(\r(5),5),sin β=eq \f(\r(10),10),所以cs α=eq \f(2\r(5),5),cs β=eq \f(3\r(10),10),所以cs(α+β)=cs αcs β-sin αsin β=eq \f(2\r(5),5)×eq \f(3\r(10),10)-eq \f(\r(5),5)×eq \f(\r(10),10)=eq \f(\r(2),2).又0<α+β<π,所以cs(α+β)=eq \f(\r(2),2),α+β=eq \f(π,4).
答案:eq \f(\r(2),2) eq \f(π,4)
[基础题组练]
1.已知sin 2α=eq \f(2,3),则cs2eq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,4)))等于( )
A.eq \f(1,6) B.eq \f(1,3)
C.eq \f(1,2) D.eq \f(2,3)
解析:选A.cs2eq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,4)))=eq \f(1+cs 2\b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,4))),2)
=eq \f(1+cs\b\lc\(\rc\)(\a\vs4\al\c1(2α+\f(π,2))),2)=eq \f(1-sin 2α,2),又sin 2α=eq \f(2,3),
所以原式=eq \f(1-\f(2,3),2)=eq \f(1,6),故选A.
2.eq \f(sin 10°,1-\r(3)tan 10°)=( )
A.eq \f(1,4) B.eq \f(1,2)
C.eq \f(\r(3),2) D.1
解析:选A.eq \f(sin 10°,1-\r(3)tan 10°)=eq \f(sin 10°cs 10°,cs 10°-\r(3)sin 10°)
=eq \f(2sin 10°cs 10°,4\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)cs 10°-\f(\r(3),2)sin 10°)))=eq \f(sin 20°,4sin(30°-10°))=eq \f(1,4).
3.若tan(α+80°)=4sin 420°,则tan(α+20°)的值为( )
A.-eq \f(\r(3),5) B.eq \f(3\r(3),5)
C.eq \f(\r(3),19) D.eq \f(\r(3),7)
解析:选D.由tan(α+80°)=4sin 420°=4sin 60°=2eq \r(3),得tan(α+20°)=tan[(α+80°)-60°]=eq \f(tan(α+80°)-tan 60°,1+tan(α+80°)tan 60°)=eq \f(2\r(3)-\r(3),1+2\r(3)×\r(3))=eq \f(\r(3),7).故选D.
4.已知cseq \b\lc\(\rc\)(\a\vs4\al\c1(2α-\f(π,3)))=-eq \f(1,3),则sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,6)))-cs α=( )
A.±eq \f(\r(3),3) B.-eq \f(\r(6),3)
C.eq \f(\r(6),3) D.±eq \f(\r(6),3)
解析:选D.sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,6)))-cs α=sin αcs eq \f(π,6)+cs αsin eq \f(π,6)-cs α=sineq \b\lc\(\rc\)(\a\vs4\al\c1(α-\f(π,6))),而cseq \b\lc\(\rc\)(\a\vs4\al\c1(2α-\f(π,3)))=1-2sin2eq \b\lc\(\rc\)(\a\vs4\al\c1(α-\f(π,6)))=-eq \f(1,3),则sineq \b\lc\(\rc\)(\a\vs4\al\c1(α-\f(π,6)))=±eq \f(\r(6),3),所以sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,6)))-cs α=±eq \f(\r(6),3),故选D.
5.若eq \f(\r(2)cs 2θ,cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)+θ)))=eq \r(3)·sin 2θ,则sin 2θ=( )
A.eq \f(1,3) B.eq \f(2,3)
C.-eq \f(2,3) D.-eq \f(1,3)
解析:选C.由题意知eq \f(2(cs2θ-sin2θ),cs θ-sin θ)=eq \r(3)sin 2θ,
所以2(cs θ+sin θ)=eq \r(3)sin 2θ,
则4(1+sin 2θ)=3sin22θ,
因此sin 2θ=-eq \f(2,3)或sin 2θ=2(舍).
6.已知cs 2θ=eq \f(4,5),则sin4θ+cs4θ= .
解析:法一:因为cs 2θ=eq \f(4,5),
所以2cs2θ-1=eq \f(4,5),1-2sin2θ=eq \f(4,5),
因为cs2θ=eq \f(9,10),sin2θ=eq \f(1,10),
所以sin4θ+cs4θ=eq \f(41,50).
法二:sin4θ+cs4θ=(sin2θ+cs2θ)2-eq \f(1,2)sin22θ
=1-eq \f(1,2)(1-cs22θ)=1-eq \f(1,2)×eq \f(9,25)=eq \f(41,50).
答案:eq \f(41,50)
7.(2020·贵州黔东南一模改编)已知sin α+3cs α=-eq \r(10),则tan 2α= .
解析:因为(sin α+3cs α)2=sin2α+6sin αcs α+9cs2α=10(sin2α+cs2α),所以9sin2α-6sin αcs α+cs2α=0,则(3tan α-1)2=0,即tan α=eq \f(1,3).所以tan 2α=eq \f(2tan α,1-tan2α)=eq \f(3,4).
答案:eq \f(3,4)
8.tan 70°·cs 10°(eq \r(3)tan 20°-1)等于 .
解析:tan 70°·cs 10°(eq \r(3)tan 20°-1)
=eq \f(sin 70°,cs 70°)·cs 10°eq \b\lc\(\rc\)(\a\vs4\al\c1(\r(3)·\f(sin 20°,cs 20°)-1))
=eq \f(cs 20°cs 10°,sin 20°)·eq \f(\r(3)sin 20°-cs 20°,cs 20°)
=eq \f(cs 10°·2sin(20°-30°),sin 20°)=eq \f(-sin 20°,sin 20°)=-1.
答案:-1
9.已知tan α=-eq \f(1,3),cs β=eq \f(\r(5),5),α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2),π)),β∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2))),求tan(α+β)的值,并求出α+β的值.
解:由cs β=eq \f(\r(5),5),β∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2))),
得sin β=eq \f(2\r(5),5),tan β=2.
所以tan(α+β)=eq \f(tan α+tan β,1-tan αtan β)
=eq \f(-\f(1,3)+2,1+\f(2,3))=1.
因为α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2),π)),β∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2))),
所以eq \f(π,2)
相关学案
这是一份2023届高考一轮复习讲义(理科)第四章 三角函数、解三角形 第3讲 第2课时 简单的三角恒等变换学案,共16页。
这是一份2023届高考一轮复习讲义(文科)第四章 三角函数、解三角形 第6讲 第2课时 高效演练 分层突破学案,共5页。
这是一份2023届高考一轮复习讲义(文科)第四章 三角函数、解三角形 第2讲 高效演练 分层突破学案,共4页。
