年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2023届高考一轮复习讲义(文科)第四章 三角函数、解三角形 第4讲 第2课时 高效演练 分层突破学案

    2023届高考一轮复习讲义(文科)第四章 三角函数、解三角形    第4讲 第2课时 高效演练 分层突破学案第1页
    2023届高考一轮复习讲义(文科)第四章 三角函数、解三角形    第4讲 第2课时 高效演练 分层突破学案第2页
    2023届高考一轮复习讲义(文科)第四章 三角函数、解三角形    第4讲 第2课时 高效演练 分层突破学案第3页
    还剩3页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023届高考一轮复习讲义(文科)第四章 三角函数、解三角形 第4讲 第2课时 高效演练 分层突破学案

    展开

    这是一份2023届高考一轮复习讲义(文科)第四章 三角函数、解三角形 第4讲 第2课时 高效演练 分层突破学案,共6页。
    1.函数y=eq \r(3)sin 2x+cs 2x的最小正周期为( )
    A.eq \f(π,2) B.eq \f(2π,3)
    C.π D.2π
    解析:选C.因为y=2eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(3),2)sin 2x+\f(1,2)cs 2x))=
    2sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,6))),所以T=eq \f(2π,2)=π.
    2.f(x)=tan x+sin x+1,若f(b)=2,则f(-b)=( )
    A.0 B.3
    C.-1 D.-2
    解析:选A.因为f(b)=tan b+sin b+1=2,
    即tan b+sin b=1.
    所以f(-b)=tan(-b)+sin(-b)+1
    =-(tan b+sin b)+1=0.
    3.若eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,8),0))是函数f(x)=sin ωx+cs ωx图象的一个对称中心,则ω的一个取值是( )
    A.2 B.4
    C.6 D.8
    解析:选C.因为f(x)=sin ωx+cs ωx=eq \r(2)sineq \b\lc\(\rc\)(\a\vs4\al\c1(ωx+\f(π,4))),
    由题意,知feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,8)))=eq \r(2)sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(ωπ,8)+\f(π,4)))=0,所以eq \f(ωπ,8)+eq \f(π,4)=kπ(k∈Z),即ω=8k-2(k∈Z),当k=1时,ω=6.
    4.关于函数y=tan(2x-eq \f(π,3)),下列说法正确的是( )
    A.是奇函数
    B.在区间(0,eq \f(π,3))上单调递减
    C.(eq \f(π,6),0)为其图象的一个对称中心
    D.最小正周期为π
    解析:选C.函数y=tan(2x-eq \f(π,3))是非奇非偶函数,A错;在区间(0,eq \f(π,3))上单调递增,B错;最小正周期为eq \f(π,2),D错;由2x-eq \f(π,3)=eq \f(kπ,2),k∈Z得x=eq \f(kπ,4)+eq \f(π,6),当k=0时,x=eq \f(π,6),所以它的图象关于(eq \f(π,6),0)中心对称,故选C.
    5.已知函数f(x)=2sineq \b\lc\(\rc\)(\a\vs4\al\c1(ωx+\f(π,6)))(ω>0)的最小正周期为4π,则该函数的图象( )
    A.关于点eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,3),0))对称 B.关于点eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(5π,3),0))对称
    C.关于直线x=eq \f(π,3)对称 D.关于直线x=eq \f(5π,3)对称
    解析:选B.函数f(x)=2sineq \b\lc\(\rc\)(\a\vs4\al\c1(ωx+\f(π,6)))(ω>0)的最小正周期是4π,而T=eq \f(2π,ω)=4π,所以ω=eq \f(1,2),即f(x)=2sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)x+\f(π,6))).函数f(x)的对称轴为eq \f(x,2)+eq \f(π,6)=eq \f(π,2)+kπ,解得x=eq \f(2,3)π+2kπ(k∈Z);令k=0得x=eq \f(2,3)π.函数f(x)的对称中心的横坐标为eq \f(x,2)+eq \f(π,6)=kπ,解得x=2kπ-eq \f(1,3)π(k∈Z),令k=1得f(x)的一个对称中心eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(5,3)π,0)).
    6.若函数y=cseq \b\lc\(\rc\)(\a\vs4\al\c1(ωx+\f(π,6)))(ω∈N*)图象的一个对称中心是eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,6),0)),则ω的最小值为 .
    解析:由题意知eq \f(πω,6)+eq \f(π,6)=kπ+eq \f(π,2)(k∈Z)⇒ω=6k+2(k∈Z),又ω∈N*,所以ωmin=2.
    答案:2
    7.(2020·无锡期末)在函数①y=cs|2x|;②y=|cs 2x|;③y=cseq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,6)));④y=tan 2x中,最小正周期为π的所有函数的序号为 .
    解析:①y=cs|2x|=cs 2x,最小正周期为π;②y=cs 2x,最小正周期为π,由图象知y=|cs 2x|的最小正周期为eq \f(π,2);③y=cseq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,6)))的最小正周期T=eq \f(2π,2)=π;④y=tan 2x的最小正周期T=eq \f(π,2).因此①③的最小正周期为π.
    答案:①③
    8.已知函数f(x)=2sin(ωx-eq \f(π,6))+1(x∈R)的图象的一条对称轴为x=π,其中ω为常数,且ω∈(1,2),则函数f(x)的最小正周期为 .
    解析:由函数f(x)=2sin(ωx-eq \f(π,6))+1(x∈R)的图象的一条对称轴为x=π,可得ωπ-eq \f(π,6)=kπ+eq \f(π,2),k∈Z,
    所以ω=k+eq \f(2,3),又ω∈(1,2),所以ω=eq \f(5,3),从而得函数f(x)的最小正周期为eq \f(2π,\f(5,3))=eq \f(6π,5).
    答案:eq \f(6π,5)
    9.已知函数f(x)=2cs2eq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,6)))+2sineq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,4)))·sineq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,4))).求函数f(x)的最小正周期和图象的对称中心.
    解:因为f(x)=2cs2eq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,6)))+2sineq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,4)))·sineq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,4)))
    =cseq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,3)))+1+2sineq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,4)))sineq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,2)-\f(π,4)))
    =cseq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,3)))+2sineq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,4)))cseq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,4)))+1
    =eq \f(1,2)cs 2x+eq \f(\r(3),2)sin 2x+sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,2)))+1
    =eq \f(\r(3),2)sin 2x-eq \f(1,2)cs 2x+1
    =sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,6)))+1,
    所以f(x)的最小正周期为eq \f(2π,2)=π,图象的对称中心为eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,12)+\f(kπ,2),1)),k∈Z.
    10.已知函数f(x)=sin(ωx+φ)eq \b\lc\(\rc\)(\a\vs4\al\c1(0

    相关学案

    2023届高考一轮复习讲义(文科)第四章 三角函数、解三角形 第6讲 第2课时 高效演练 分层突破学案:

    这是一份2023届高考一轮复习讲义(文科)第四章 三角函数、解三角形 第6讲 第2课时 高效演练 分层突破学案,共5页。

    2023届高考一轮复习讲义(文科)第四章 三角函数、解三角形 第2讲 高效演练 分层突破学案:

    这是一份2023届高考一轮复习讲义(文科)第四章 三角函数、解三角形 第2讲 高效演练 分层突破学案,共4页。

    2023届高考一轮复习讲义(文科)第四章 三角函数、解三角形 第7讲 高效演练 分层突破学案:

    这是一份2023届高考一轮复习讲义(文科)第四章 三角函数、解三角形 第7讲 高效演练 分层突破学案,共7页。

    • 精品推荐
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map