2023届高考一轮复习讲义(理科)第二章 函数概念与基本初等函数 第3讲 高效演练分层突破学案
展开1.下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是( )
A.y=eq \f(1,x) B.y=|x|-1
C.y=lg x D.y=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))eq \s\up12(|x|)
解析:选B.y=eq \f(1,x)为奇函数;y=lg x的定义域为(0,+∞),不具备奇偶性;y=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))eq \s\up12(|x|)在(0,+∞)上为减函数;y=|x|-1在(0,+∞)上为增函数,且在定义域上为偶函数.
2.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=3x-7x+2b(b为常数),则f(-2)=( )
A.6 B.-6
C.4 D.-4
解析:选A.因为f(x)为定义在R上的奇函数,且当x≥0时,f(x)=3x-7x+2b,
所以f(0)=1+2b=0,
所以b=-eq \f(1,2).
所以f(x)=3x-7x-1,
所以f(-2)=-f(2)=-(32-7×2-1)=6.选A.
3.已知函数y=f(x),满足y=f(-x)和y=f(x+2)是偶函数,且f(1)=eq \f(π,3),设F(x)=f(x)+f(-x),则F(3)=( )
A.eq \f(π,3) B.eq \f(2π,3)
C.π D.eq \f(4π,3)
解析:选B.由y=f(-x)和y=f(x+2)是偶函数知,f(-x)=f(x),f(x+2)=f(-x+2)=f(x-2),故f(x)=f(x+4),则F(3)=f(3)+f(-3)=2f(3)=2f(-1)=2f(1)=eq \f(2π,3),故选B.
4.定义在R上的偶函数f(x)满足f(x+3)=f(x).若f(2)>1,f(7)=a,则实数a的取值范围为( )
A.(-∞,-3) B.(3,+∞)
C.(-∞,-1) D.(1,+∞)
解析:选D.因为f(x+3)=f(x),所以f(x)是定义在R上的以3为周期的周期函数,所以f(7)=f(7-9)=f(-2).又因为函数f(x)是偶函数,
所以f(-2)=f(2),所以f(7)=f(2)>1,
所以a>1,即a∈(1,+∞).故选D.
5.(2020·湖南郴州质量检测)已知f(x)是定义在[2b,1-b]上的偶函数,且在[2b,0]上为增函数,则f(x-1)≤f(2x)的解集为( )
A.eq \b\lc\[\rc\](\a\vs4\al\c1(-1,\f(2,3))) B.eq \b\lc\[\rc\](\a\vs4\al\c1(-1,\f(1,3)))
C.[-1,1] D.eq \b\lc\[\rc\](\a\vs4\al\c1(\f(1,3),1))
解析:选B.因为f(x)是定义在[2b,1-b]上的偶函数,所以2b+1-b=0,所以b=-1,
因为f(x)在[2b,0]上为增函数,即函数f(x)在[-2,0]上为增函数,故函数f(x)在(0,2]上为减函数,则由f(x-1)≤f(2x),可得|x-1|≥|2x|,即(x-1)2≥4x2,
解得-1≤x≤eq \f(1,3).又因为定义域为[-2,2],所以eq \b\lc\{(\a\vs4\al\c1(-2≤x-1≤2,,-2≤2x≤2,))解得eq \b\lc\{(\a\vs4\al\c1(-1≤x≤3,,-1≤x≤1.))
综上,所求不等式的解集为eq \b\lc\[\rc\](\a\vs4\al\c1(-1,\f(1,3))).故选B.
6.若函数f(x)=xln(x+eq \r(a+x2))为偶函数,则a=________.
解析:因为 f(x)为偶函数,所以f(-x)-f(x)=0恒成立,所以-xln(-x+eq \r(a+x2))-xln(x+eq \r(a+x2))=0恒成立,所以xln a=0恒成立,所以ln a=0,即a=1.
答案:1
7.(2020·四川乐山模拟)已知函数f(x)满足:f(-x)+f(x)=0,且当x≥0时,f(x)=eq \f(2+m,2x)-1,则f(-1)=____________.
解析:因为f(-x)+f(x)=0,
所以f(x)为奇函数,
又当x≥0时,f(x)=eq \f(2+m,2x)-1,
则f(0)=eq \f(2+m,1)-1=0,所以m=-1.
所以当x≥0时,f(x)=eq \f(1,2x)-1,
所以f(-1)=-f(1)=-eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)-1))=eq \f(1,2).
答案:eq \f(1,2)
8.定义在R上的函数f(x)满足f(x)=f(2-x)及f(x)=-f(-x),且在[0,1]上有f(x)=x2,则feq \b\lc\(\rc\)(\a\vs4\al\c1(2 019\f(1,2)))=________.
解析:函数f(x)的定义域是R,f(x)=-f(-x),所以函数f(x)是奇函数. 又f(x)=f(2-x),所以f(-x)=f(2+x)=-f(x),所以f(4+x)=-f(2+x)=f(x),故函数f(x)是以4为周期的奇函数,所以feq \b\lc\(\rc\)(\a\vs4\al\c1(2 019\f(1,2)))=feq \b\lc\(\rc\)(\a\vs4\al\c1(2 020-\f(1,2)))=feq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,2)))=-feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2))).因为在[0,1]上有f(x)=x2,所以feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))eq \s\up12(2)=eq \f(1,4),故feq \b\lc\(\rc\)(\a\vs4\al\c1(2 019\f(1,2)))=-eq \f(1,4).
答案:-eq \f(1,4)
9.已知函数f(x)=eq \b\lc\{(\a\vs4\al\c1(-x2+2x,x>0,,0,x=0,,x2+mx,x<0))是奇函数.
(1)求实数m的值;
(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.
解:(1)设x<0,则-x>0,
所以f(-x)=-(-x)2+2(-x)=-x2-2x.
又f(x)为奇函数,
所以f(-x)=-f(x),
于是x<0时,
f(x)=x2+2x=x2+mx,
所以m=2.
(2)由(1)可画出f(x)的图象,知f(x)在[-1,1]上是增函数,要使f(x)在[-1,a-2]上单调递增.
结合f(x)的图象知eq \b\lc\{(\a\vs4\al\c1(a-2>-1,,a-2≤1,))
所以1<a≤3,故实数a的取值范围是(1,3].
10.设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.
(1)求f(π)的值;
(2)当-4≤x≤4时,求f(x)的图象与x轴所围成的图形的面积.
解:(1)由f(x+2)=-f(x),得f(x+4)=f[(x+2)+2]=-f(x+2)=f(x),
所以f(x)是以4为周期的周期函数.
所以f(π)=f(-1×4+π)=f(π-4)
=-f(4-π)=-(4-π)=π-4.
(2)由f(x)是奇函数与f(x+2)=-f(x),
得f[(x-1)+2]=-f(x-1)=f[-(x-1)],
即f(1+x)=f(1-x).
从而可知函数y=f(x)的图象关于直线x=1对称.
又当0≤x≤1时,f(x)=x,且f(x)的图象关于原点成中心对称,则f(x)的图象如图所示.
设当-4≤x≤4时,f(x)的图象与x轴围成的图形面积为S,则S=4S△OAB=4×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)×2×1))=4.
[综合题组练]
1.(2020·广东湛江一模)已知函数g(x)=f(2x)-x2为奇函数,且f(2)=1,则f(-2)=( )
A.-2 B.-1
C.1 D.2
解析:选C.因为g(x)为奇函数,且f(2)=1,所以g(-1)=-g(1),所以f(-2)-1=-f(2)+1=-1+1=0,所以f(-2)=1.故选C.
2.函数y=f(x)在[0,2]上单调递增,且函数f(x+2)是偶函数,则下列结论成立的是( )
A.f(1)
所以函数f(x)的图象关于x=2对称,
所以feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(5,2)))=feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2))),feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(7,2)))=feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2))).
因为y=f(x)在[0,2]上单调递增,且eq \f(1,2)<1
A.eq \b\lc\(\rc\](\a\vs4\al\c1(-∞,\f(9,4))) B.eq \b\lc\(\rc\](\a\vs4\al\c1(-∞,\f(7,3)))
C.eq \b\lc\(\rc\](\a\vs4\al\c1(-∞,\f(5,2))) D.eq \b\lc\(\rc\](\a\vs4\al\c1(-∞,\f(8,3)))
解析:选B.当-1
①f(x)是周期函数;
②f(x)的图象关于x=1对称;
③f(x)在[1,2]上是减函数;
④f(2)=f(0),
其中正确命题的序号是________.(请把正确命题的序号全部写出来)
解析:因为f(x+y)=f(x)+f(y)对任意x,y∈R恒成立.
令x=y=0,
所以f(0)=0.令x+y=0,所以y=-x,
所以f(0)=f(x)+f(-x).
所以f(-x)=-f(x),所以f(x)为奇函数.
因为f(x)在x∈[-1,0]上为增函数,又f(x)为奇函数,所以f(x)在[0,1]上为增函数.
由f(x+2)=-f(x)⇒f(x+4)=-f(x+2)
⇒f(x+4)=f(x),
所以周期T=4,
即f(x)为周期函数.
f(x+2)=-f(x)⇒f(-x+2)=-f(-x).
又因为f(x)为奇函数,
所以f(2-x)=f(x),
所以函数关于x=1对称.
由f(x)在[0,1]上为增函数,
又关于x=1对称,
所以f(x)在[1,2]上为减函数.
由f(x+2)=-f(x),令x=0得f(2)=-f(0)=f(0).
答案:①②③④
5.已知函数y=f(x)在定义域[-1,1]上既是奇函数又是减函数.
(1)求证:对任意x1,x2∈[-1,1],有[f(x1)+f(x2)]·(x1+x2)≤0;
(2)若f(1-a)+f(1-a2)<0,求实数a的取值范围.
解:(1)证明:若x1+x2=0,显然不等式成立.
若x1+x2<0,则-1≤x1<-x2≤1,
因为f(x)在[-1,1]上是减函数且为奇函数,
所以f(x1)>f(-x2)=-f(x2),所以f(x1)+f(x2)>0.
所以[f(x1)+f(x2)](x1+x2)<0成立.
若x1+x2>0,则1≥x1>-x2≥-1,
同理可证f(x1)+f(x2)<0.
所以[f(x1)+f(x2)](x1+x2)<0成立.
综上得证,对任意x1,x2∈[-1,1],有[f(x1)+f(x2)]·(x1+x2)≤0恒成立.
(2)因为f(1-a)+f(1-a2)<0⇔f(1-a2)<-f(1-a)=f(a-1),所以由f(x)在定义域[-1,1]上是减函数,得eq \b\lc\{(\a\vs4\al\c1(-1≤1-a2≤1,,-1≤a-1≤1,,1-a2>a-1,))即eq \b\lc\{(\a\vs4\al\c1(0≤a2≤2,,0≤a≤2,,a2+a-2<0,))解得0≤a<1.
故所求实数a的取值范围是[0,1).
6.已知函数f(x)对任意x∈R满足f(x)+f(-x)=0,f(x-1)=f(x+1),若当x∈[0,1)时,f(x)=ax+b(a>0且a≠1),且feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)))=eq \f(1,2).
(1)求实数a,b的值;
(2)求函数g(x)=f2(x)+f(x)的值域.
解:(1)因为f(x)+f(-x)=0,
所以f(-x)=-f(x),即f(x)是奇函数.
因为f(x-1)=f(x+1),所以f(x+2)=f(x),
即函数f(x)是周期为2的周期函数,
所以f(0)=0,即b=-1.
又feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)))=feq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,2)))=-feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))=1-eq \r(a)=eq \f(1,2),
解得a=eq \f(1,4).
(2)当x∈[0,1)时,f(x)=ax+b=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,4)))eq \s\up12(x)-1∈eq \b\lc\(\rc\](\a\vs4\al\c1(-\f(3,4),0)),
由f(x)为奇函数知,当x∈(-1,0)时,f(x)∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(3,4))),
又因为f(x)是周期为2的周期函数,
所以当x∈R时,f(x)∈eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(3,4),\f(3,4))),
设t=f(x)∈eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(3,4),\f(3,4))),
所以g(x)=f2(x)+f(x)=t2+t=eq \b\lc\(\rc\)(\a\vs4\al\c1(t+\f(1,2)))eq \s\up12(2)-eq \f(1,4),
即y=eq \b\lc\(\rc\)(\a\vs4\al\c1(t+\f(1,2)))eq \s\up12(2)-eq \f(1,4)∈eq \b\lc\[\rc\)(\a\vs4\al\c1(-\f(1,4),\f(21,16))).
故函数g(x)=f2(x)+f(x)的值域为eq \b\lc\[\rc\)(\a\vs4\al\c1(-\f(1,4),\f(21,16))).
2023届高考一轮复习讲义(理科)第二章 函数概念与基本初等函数 第9讲 高效演练分层突破学案: 这是一份2023届高考一轮复习讲义(理科)第二章 函数概念与基本初等函数 第9讲 高效演练分层突破学案,共8页。
2023届高考一轮复习讲义(理科)第二章 函数概念与基本初等函数 第8讲 高效演练分层突破学案: 这是一份2023届高考一轮复习讲义(理科)第二章 函数概念与基本初等函数 第8讲 高效演练分层突破学案,共6页。
2023届高考一轮复习讲义(理科)第二章 函数概念与基本初等函数 第6讲 高效演练分层突破学案: 这是一份2023届高考一轮复习讲义(理科)第二章 函数概念与基本初等函数 第6讲 高效演练分层突破学案,共5页。