|学案下载
搜索
    上传资料 赚现金
    2023届高考一轮复习讲义(理科)第二章 函数概念与基本初等函数 第3讲 高效演练分层突破学案
    立即下载
    加入资料篮
    2023届高考一轮复习讲义(理科)第二章 函数概念与基本初等函数    第3讲 高效演练分层突破学案01
    2023届高考一轮复习讲义(理科)第二章 函数概念与基本初等函数    第3讲 高效演练分层突破学案02
    2023届高考一轮复习讲义(理科)第二章 函数概念与基本初等函数    第3讲 高效演练分层突破学案03
    还剩4页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023届高考一轮复习讲义(理科)第二章 函数概念与基本初等函数 第3讲 高效演练分层突破学案

    展开
    这是一份2023届高考一轮复习讲义(理科)第二章 函数概念与基本初等函数 第3讲 高效演练分层突破学案,共7页。

    1.下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是( )
    A.y=eq \f(1,x) B.y=|x|-1
    C.y=lg x D.y=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))eq \s\up12(|x|)
    解析:选B.y=eq \f(1,x)为奇函数;y=lg x的定义域为(0,+∞),不具备奇偶性;y=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))eq \s\up12(|x|)在(0,+∞)上为减函数;y=|x|-1在(0,+∞)上为增函数,且在定义域上为偶函数.
    2.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=3x-7x+2b(b为常数),则f(-2)=( )
    A.6 B.-6
    C.4 D.-4
    解析:选A.因为f(x)为定义在R上的奇函数,且当x≥0时,f(x)=3x-7x+2b,
    所以f(0)=1+2b=0,
    所以b=-eq \f(1,2).
    所以f(x)=3x-7x-1,
    所以f(-2)=-f(2)=-(32-7×2-1)=6.选A.
    3.已知函数y=f(x),满足y=f(-x)和y=f(x+2)是偶函数,且f(1)=eq \f(π,3),设F(x)=f(x)+f(-x),则F(3)=( )
    A.eq \f(π,3) B.eq \f(2π,3)
    C.π D.eq \f(4π,3)
    解析:选B.由y=f(-x)和y=f(x+2)是偶函数知,f(-x)=f(x),f(x+2)=f(-x+2)=f(x-2),故f(x)=f(x+4),则F(3)=f(3)+f(-3)=2f(3)=2f(-1)=2f(1)=eq \f(2π,3),故选B.
    4.定义在R上的偶函数f(x)满足f(x+3)=f(x).若f(2)>1,f(7)=a,则实数a的取值范围为( )
    A.(-∞,-3) B.(3,+∞)
    C.(-∞,-1) D.(1,+∞)
    解析:选D.因为f(x+3)=f(x),所以f(x)是定义在R上的以3为周期的周期函数,所以f(7)=f(7-9)=f(-2).又因为函数f(x)是偶函数,
    所以f(-2)=f(2),所以f(7)=f(2)>1,
    所以a>1,即a∈(1,+∞).故选D.
    5.(2020·湖南郴州质量检测)已知f(x)是定义在[2b,1-b]上的偶函数,且在[2b,0]上为增函数,则f(x-1)≤f(2x)的解集为( )
    A.eq \b\lc\[\rc\](\a\vs4\al\c1(-1,\f(2,3))) B.eq \b\lc\[\rc\](\a\vs4\al\c1(-1,\f(1,3)))
    C.[-1,1] D.eq \b\lc\[\rc\](\a\vs4\al\c1(\f(1,3),1))
    解析:选B.因为f(x)是定义在[2b,1-b]上的偶函数,所以2b+1-b=0,所以b=-1,
    因为f(x)在[2b,0]上为增函数,即函数f(x)在[-2,0]上为增函数,故函数f(x)在(0,2]上为减函数,则由f(x-1)≤f(2x),可得|x-1|≥|2x|,即(x-1)2≥4x2,
    解得-1≤x≤eq \f(1,3).又因为定义域为[-2,2],所以eq \b\lc\{(\a\vs4\al\c1(-2≤x-1≤2,,-2≤2x≤2,))解得eq \b\lc\{(\a\vs4\al\c1(-1≤x≤3,,-1≤x≤1.))
    综上,所求不等式的解集为eq \b\lc\[\rc\](\a\vs4\al\c1(-1,\f(1,3))).故选B.
    6.若函数f(x)=xln(x+eq \r(a+x2))为偶函数,则a=________.
    解析:因为 f(x)为偶函数,所以f(-x)-f(x)=0恒成立,所以-xln(-x+eq \r(a+x2))-xln(x+eq \r(a+x2))=0恒成立,所以xln a=0恒成立,所以ln a=0,即a=1.
    答案:1
    7.(2020·四川乐山模拟)已知函数f(x)满足:f(-x)+f(x)=0,且当x≥0时,f(x)=eq \f(2+m,2x)-1,则f(-1)=____________.
    解析:因为f(-x)+f(x)=0,
    所以f(x)为奇函数,
    又当x≥0时,f(x)=eq \f(2+m,2x)-1,
    则f(0)=eq \f(2+m,1)-1=0,所以m=-1.
    所以当x≥0时,f(x)=eq \f(1,2x)-1,
    所以f(-1)=-f(1)=-eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)-1))=eq \f(1,2).
    答案:eq \f(1,2)
    8.定义在R上的函数f(x)满足f(x)=f(2-x)及f(x)=-f(-x),且在[0,1]上有f(x)=x2,则feq \b\lc\(\rc\)(\a\vs4\al\c1(2 019\f(1,2)))=________.
    解析:函数f(x)的定义域是R,f(x)=-f(-x),所以函数f(x)是奇函数. 又f(x)=f(2-x),所以f(-x)=f(2+x)=-f(x),所以f(4+x)=-f(2+x)=f(x),故函数f(x)是以4为周期的奇函数,所以feq \b\lc\(\rc\)(\a\vs4\al\c1(2 019\f(1,2)))=feq \b\lc\(\rc\)(\a\vs4\al\c1(2 020-\f(1,2)))=feq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,2)))=-feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2))).因为在[0,1]上有f(x)=x2,所以feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))eq \s\up12(2)=eq \f(1,4),故feq \b\lc\(\rc\)(\a\vs4\al\c1(2 019\f(1,2)))=-eq \f(1,4).
    答案:-eq \f(1,4)
    9.已知函数f(x)=eq \b\lc\{(\a\vs4\al\c1(-x2+2x,x>0,,0,x=0,,x2+mx,x<0))是奇函数.
    (1)求实数m的值;
    (2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.
    解:(1)设x<0,则-x>0,
    所以f(-x)=-(-x)2+2(-x)=-x2-2x.
    又f(x)为奇函数,
    所以f(-x)=-f(x),
    于是x<0时,
    f(x)=x2+2x=x2+mx,
    所以m=2.
    (2)由(1)可画出f(x)的图象,知f(x)在[-1,1]上是增函数,要使f(x)在[-1,a-2]上单调递增.
    结合f(x)的图象知eq \b\lc\{(\a\vs4\al\c1(a-2>-1,,a-2≤1,))
    所以1<a≤3,故实数a的取值范围是(1,3].
    10.设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.
    (1)求f(π)的值;
    (2)当-4≤x≤4时,求f(x)的图象与x轴所围成的图形的面积.
    解:(1)由f(x+2)=-f(x),得f(x+4)=f[(x+2)+2]=-f(x+2)=f(x),
    所以f(x)是以4为周期的周期函数.
    所以f(π)=f(-1×4+π)=f(π-4)
    =-f(4-π)=-(4-π)=π-4.
    (2)由f(x)是奇函数与f(x+2)=-f(x),
    得f[(x-1)+2]=-f(x-1)=f[-(x-1)],
    即f(1+x)=f(1-x).
    从而可知函数y=f(x)的图象关于直线x=1对称.
    又当0≤x≤1时,f(x)=x,且f(x)的图象关于原点成中心对称,则f(x)的图象如图所示.
    设当-4≤x≤4时,f(x)的图象与x轴围成的图形面积为S,则S=4S△OAB=4×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)×2×1))=4.
    [综合题组练]
    1.(2020·广东湛江一模)已知函数g(x)=f(2x)-x2为奇函数,且f(2)=1,则f(-2)=( )
    A.-2 B.-1
    C.1 D.2
    解析:选C.因为g(x)为奇函数,且f(2)=1,所以g(-1)=-g(1),所以f(-2)-1=-f(2)+1=-1+1=0,所以f(-2)=1.故选C.
    2.函数y=f(x)在[0,2]上单调递增,且函数f(x+2)是偶函数,则下列结论成立的是( )
    A.f(1)C.feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(7,2)))解析:选B.因为函数f(x+2)是偶函数,所以f(x+2)=f(-x+2),
    所以函数f(x)的图象关于x=2对称,
    所以feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(5,2)))=feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2))),feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(7,2)))=feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2))).
    因为y=f(x)在[0,2]上单调递增,且eq \f(1,2)<1所以feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))3.(2019·高考全国卷Ⅱ)设函数f(x)的定义域为R,满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x(x-1).若对任意x∈(-∞,m],都有f(x)≥-eq \f(8,9),则m的取值范围是( )
    A.eq \b\lc\(\rc\](\a\vs4\al\c1(-∞,\f(9,4))) B.eq \b\lc\(\rc\](\a\vs4\al\c1(-∞,\f(7,3)))
    C.eq \b\lc\(\rc\](\a\vs4\al\c1(-∞,\f(5,2))) D.eq \b\lc\(\rc\](\a\vs4\al\c1(-∞,\f(8,3)))
    解析:选B.当-1f(x)=eq \b\lc\{(\a\vs4\al\c1(…,\f(1,2)(x+1)x,-14.定义在R上的函数f(x)满足f(x+y)=f(x)+f(y),f(x+2)=-f(x)且f(x)在[-1,0]上是增函数,给出下列几个命题:
    ①f(x)是周期函数;
    ②f(x)的图象关于x=1对称;
    ③f(x)在[1,2]上是减函数;
    ④f(2)=f(0),
    其中正确命题的序号是________.(请把正确命题的序号全部写出来)
    解析:因为f(x+y)=f(x)+f(y)对任意x,y∈R恒成立.
    令x=y=0,
    所以f(0)=0.令x+y=0,所以y=-x,
    所以f(0)=f(x)+f(-x).
    所以f(-x)=-f(x),所以f(x)为奇函数.
    因为f(x)在x∈[-1,0]上为增函数,又f(x)为奇函数,所以f(x)在[0,1]上为增函数.
    由f(x+2)=-f(x)⇒f(x+4)=-f(x+2)
    ⇒f(x+4)=f(x),
    所以周期T=4,
    即f(x)为周期函数.
    f(x+2)=-f(x)⇒f(-x+2)=-f(-x).
    又因为f(x)为奇函数,
    所以f(2-x)=f(x),
    所以函数关于x=1对称.
    由f(x)在[0,1]上为增函数,
    又关于x=1对称,
    所以f(x)在[1,2]上为减函数.
    由f(x+2)=-f(x),令x=0得f(2)=-f(0)=f(0).
    答案:①②③④
    5.已知函数y=f(x)在定义域[-1,1]上既是奇函数又是减函数.
    (1)求证:对任意x1,x2∈[-1,1],有[f(x1)+f(x2)]·(x1+x2)≤0;
    (2)若f(1-a)+f(1-a2)<0,求实数a的取值范围.
    解:(1)证明:若x1+x2=0,显然不等式成立.
    若x1+x2<0,则-1≤x1<-x2≤1,
    因为f(x)在[-1,1]上是减函数且为奇函数,
    所以f(x1)>f(-x2)=-f(x2),所以f(x1)+f(x2)>0.
    所以[f(x1)+f(x2)](x1+x2)<0成立.
    若x1+x2>0,则1≥x1>-x2≥-1,
    同理可证f(x1)+f(x2)<0.
    所以[f(x1)+f(x2)](x1+x2)<0成立.
    综上得证,对任意x1,x2∈[-1,1],有[f(x1)+f(x2)]·(x1+x2)≤0恒成立.
    (2)因为f(1-a)+f(1-a2)<0⇔f(1-a2)<-f(1-a)=f(a-1),所以由f(x)在定义域[-1,1]上是减函数,得eq \b\lc\{(\a\vs4\al\c1(-1≤1-a2≤1,,-1≤a-1≤1,,1-a2>a-1,))即eq \b\lc\{(\a\vs4\al\c1(0≤a2≤2,,0≤a≤2,,a2+a-2<0,))解得0≤a<1.
    故所求实数a的取值范围是[0,1).
    6.已知函数f(x)对任意x∈R满足f(x)+f(-x)=0,f(x-1)=f(x+1),若当x∈[0,1)时,f(x)=ax+b(a>0且a≠1),且feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)))=eq \f(1,2).
    (1)求实数a,b的值;
    (2)求函数g(x)=f2(x)+f(x)的值域.
    解:(1)因为f(x)+f(-x)=0,
    所以f(-x)=-f(x),即f(x)是奇函数.
    因为f(x-1)=f(x+1),所以f(x+2)=f(x),
    即函数f(x)是周期为2的周期函数,
    所以f(0)=0,即b=-1.
    又feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)))=feq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,2)))=-feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))=1-eq \r(a)=eq \f(1,2),
    解得a=eq \f(1,4).
    (2)当x∈[0,1)时,f(x)=ax+b=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,4)))eq \s\up12(x)-1∈eq \b\lc\(\rc\](\a\vs4\al\c1(-\f(3,4),0)),
    由f(x)为奇函数知,当x∈(-1,0)时,f(x)∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(3,4))),
    又因为f(x)是周期为2的周期函数,
    所以当x∈R时,f(x)∈eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(3,4),\f(3,4))),
    设t=f(x)∈eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(3,4),\f(3,4))),
    所以g(x)=f2(x)+f(x)=t2+t=eq \b\lc\(\rc\)(\a\vs4\al\c1(t+\f(1,2)))eq \s\up12(2)-eq \f(1,4),
    即y=eq \b\lc\(\rc\)(\a\vs4\al\c1(t+\f(1,2)))eq \s\up12(2)-eq \f(1,4)∈eq \b\lc\[\rc\)(\a\vs4\al\c1(-\f(1,4),\f(21,16))).
    故函数g(x)=f2(x)+f(x)的值域为eq \b\lc\[\rc\)(\a\vs4\al\c1(-\f(1,4),\f(21,16))).
    相关学案

    2023届高考一轮复习讲义(理科)第二章 函数概念与基本初等函数 第9讲 高效演练分层突破学案: 这是一份2023届高考一轮复习讲义(理科)第二章 函数概念与基本初等函数 第9讲 高效演练分层突破学案,共8页。

    2023届高考一轮复习讲义(理科)第二章 函数概念与基本初等函数 第8讲 高效演练分层突破学案: 这是一份2023届高考一轮复习讲义(理科)第二章 函数概念与基本初等函数 第8讲 高效演练分层突破学案,共6页。

    2023届高考一轮复习讲义(理科)第二章 函数概念与基本初等函数 第6讲 高效演练分层突破学案: 这是一份2023届高考一轮复习讲义(理科)第二章 函数概念与基本初等函数 第6讲 高效演练分层突破学案,共5页。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2023届高考一轮复习讲义(理科)第二章 函数概念与基本初等函数 第3讲 高效演练分层突破学案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map