所属成套资源:2023届高考一轮复习讲义(理科)讲义学案练习【解析版】
2023届高考一轮复习讲义(理科)第四章 三角函数、解三角形 第7讲 解三角形的综合应用学案
展开
这是一份2023届高考一轮复习讲义(理科)第四章 三角函数、解三角形 第7讲 解三角形的综合应用学案,共20页。学案主要包含了知识梳理,习题改编等内容,欢迎下载使用。
一、知识梳理
1.仰角和俯角
在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图①).
2.方位角
从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).
3.方向角
相对于某一正方向的水平角.
(1)北偏东α,即由指北方向顺时针旋转α到达目标方向(如图③).
(2)北偏西α,即由指北方向逆时针旋转α到达目标方向.
(3)南偏西等其他方向角类似.
4.坡角与坡度
(1)坡角:坡面与水平面所成的二面角的度数(如图④,角θ为坡角).
(2)坡度:坡面的铅直高度与水平长度之比(如图④,i为坡度).坡度又称为坡比.
常用结论
测量中的几种常见问题
二、习题改编
1.(必修5P11例1改编)
如图所示,设A,B两点在河的两岸,一测量者在A所在的同侧河岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°后,则可以计算出A,B两点的距离为________m.
解析:由正弦定理得eq \f(AB,sin∠ACB)=eq \f(AC,sin B),又因为∠B=30°,
所以AB=eq \f(AC·sin∠ACB,sin B)=eq \f(50×\f(\r(2),2),\f(1,2))=50eq \r(2)(m).
答案:50eq \r(2)
2.(必修5P13例3改编)如图,在山脚A测得山顶P的仰角为30°,沿倾斜角为15°的斜坡向上走a米到B,在B处测得山顶P的仰角为60°,则山高h=________米.
解析:由题图可得∠PAQ=α=30°,
∠BAQ=β=15°,△PAB中,∠PAB=α-β=15°,
又∠PBC=γ=60°,
所以∠BPA=(90°-α)-(90°-γ)=γ-α=30°,
所以eq \f(a,sin 30°)=eq \f(PB,sin 15°),所以PB=eq \f(\r(6)-\r(2),2)a,
所以PQ=PC+CQ=PB·sin γ+asin β
=eq \f(\r(6)-\r(2),2)a×sin 60°+asin 15°=eq \f(\r(2),2)a.
答案:eq \f(\r(2),2)a
一、思考辨析
判断正误(正确的打“√”,错误的打“×”)
(1)东北方向就是北偏东45°的方向.( )
(2)从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为α+β=180°.( )
(3)俯角是铅垂线与视线所成的角,其范围为eq \b\lc\[\rc\](\a\vs4\al\c1(0,\f(π,2))).( )
(4)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.( )
(5)方位角大小的范围是[0,2π),方向角大小的范围一般是[0,eq \f(π,2)).( )
答案:(1)√ (2)× (3)× (4)√ (5)√
二、易错纠偏
eq \a\vs4\al(常见误区)eq \b\lc\|(\a\vs4\al\c1(K))(1)方向角与方位角概念不清;
(2)仰角、俯角概念不清;
(3)不能将空间问题转化为解三角形问题.
1.
如图所示,已知两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20°的方向上,灯塔B在观察站C的南偏东40°的方向上,则灯塔A相对于灯塔B的方向为( )
A.北偏西5° B.北偏西10°
C.北偏西15° D.北偏西20°
解析:选B.易知∠B=∠A=30°,C在B的北偏西40°的方向上,又40°-30°=10°,故灯塔A相对于灯塔B的方向为北偏西10°.
2.在某次测量中,在A处测得同一半平面方向的B点的仰角是60°,C点的俯角为70°,则∠BAC=________
答案:130°
3.江岸边有一炮台高30 m,江中有两条船,船与炮台底部在同一水平面上,在炮台顶部测得两条船的俯角分别为45°和60°,而且两条船与炮台底部所连的线成30°角,则两条船相距________m.
解析:由题意画示意图,如图,
OM=AOtan 45°=30(m),
ON=AOtan 30°=eq \f(\r(3),3)×30=10eq \r(3)(m),
在△MON中,由余弦定理得,
MN=eq \r(900+300-2×30×10\r(3)×\f(\r(3),2))=eq \r(300)=10eq \r(3)(m).
答案:10eq \r(3)
求距离、高度问题(师生共研)
(1)(2020·福建宁德5月质检)海洋蓝洞是地球罕见的自然地理现象,被誉为“地球给人类保留宇宙秘密的最后遗产”,我国拥有世界上
已知最深的海洋蓝洞.若要测量如图所示的海洋蓝洞的口径(即A,B两点间的距离),现取两点C,D,测得CD=80,∠ADB=135°,∠BDC=∠DCA=15°,∠ACB=120°,则图中海洋蓝洞的口径为________.
(2)(2020·吉林长春质量监测(四))
《海岛算经》是中国学者刘徽编撰的一部测量数学著作,现有取自其中的一个问题:今有望海岛,立两表,齐高三丈,前后相去千步,令后表与前表参相直,从前表却行一百二十三步,人目着地,取望岛峰,与表末参合,从后表却行一百二十七步,人目着地,取望岛峰,亦与表末参合,问岛高几何?其大意为:如图所示,立两个三丈高的标杆BC和DE,两标杆之间的距离BD=1 000步,两标杆的底端与海岛的底端H在同一直线上,从前面的标杆B处后退123步,人眼贴地面,从地上F处仰望岛峰,A,C,F三点共线,从后面的标杆D处后退127步,人眼贴地面,从地上G处仰望岛峰,A,E,G三点也共线,则海岛的高为______步.(注:1步=6尺,1里=180丈=1 800尺=300步)
【解析】 (1)由已知得,在△ACD中,∠ACD=15°,∠ADC=150°,所以∠DAC=15°,
由正弦定理得AC=eq \f(80sin 150°,sin 15°)=eq \f(40,\f(\r(6)-\r(2),4))=40(eq \r(6)+eq \r(2)).
在△BCD中,∠BDC=15°,∠BCD=135°,
所以∠DBC=30°,
由正弦定理eq \f(CD,sin∠CBD)=eq \f(BC,sin∠BDC),
得BC=eq \f(CDsin∠BDC,sin∠CBD)=eq \f(80×sin 15°,\f(1,2))=160sin 15°=40(eq \r(6)-eq \r(2)).
在△ABC中,由余弦定理,得AB2=1 600×(8+4eq \r(3))+1 600×(8-4eq \r(3))+2×1 600×(eq \r(6)+eq \r(2))×(eq \r(6)-eq \r(2))×eq \f(1,2)=1 600×16+1 600×4=1 600×20=32 000,
解得AB=80eq \r(5).
故图中海洋蓝洞的口径为80eq \r(5).
(2)因为AH∥BC,所以△BCF∽△HAF,
所以eq \f(BF,HF)=eq \f(BC,AH).
因为AH∥DE,所以△DEG∽△HAG,所以eq \f(DG,HG)=eq \f(DE,AH).
又BC=DE,所以eq \f(BF,HF)=eq \f(DG,HG),
即eq \f(123,123+HB)=eq \f(127,127+1 000+HB),所以HB=30 750步,
又eq \f(BF,HF)=eq \f(BC,AH),所以AH=eq \f(5×(30 750+123),123)=1 255(步).
【答案】 (1)80eq \r(5) (2)1 255
eq \a\vs4\al()
求距离、角度问题的注意事项
(1)选定或确定要创建的三角形,首先确定所求量所在的三角形,若其他量已知则直接求解;若有未知量,则把未知量放在另一确定三角形中求解.
(2)确定用正弦定理还是余弦定理,如果都可以用,就选择更便于计算的定理.
1.
如图,为了测量两座山峰上P,Q两点之间的距离,选择山坡上一段长度为300eq \r(3) m且和P,Q两点在同一平面内的路段AB的两个端点作为观测点,现测得∠PAB=90°,∠PAQ=∠PBA=∠PBQ=60°,则P,Q两点间的距离为________m.
解析:由已知,得∠QAB=∠PAB-∠PAQ=30°.
又∠PBA=∠PBQ=60°,所以∠AQB=30°,所以AB=BQ.
又PB为公共边,所以△PAB≌△PQB,所以PQ=PA.
在Rt△PAB中,AP=AB·tan 60°=900,故PQ=900,
所以P,Q两点间的距离为900 m.
答案:900
2.为了测量某新建的信号发射塔AB的高度,先取与发射塔底部B的同一水平面内的两个观测点C,D,测得∠BDC=60°,∠BCD=75°,CD=40 m,并在点C的正上方E处观测发射塔顶部A的仰角为30°,且CE=1 m,则发射塔高AB=________m.
解析:
如图,过点E作EF⊥AB,垂足为F,则EF=BC,BF=CE=1,∠AEF=30°.
在△BCD中,由正弦定理得,
BC=eq \f(CD·sin∠BDC,sin∠CBD)=eq \f(40·sin 60°,sin 45°)=20eq \r(6).
所以EF=20eq \r(6),在Rt△AFE中,AF=EF·tan∠AEF=20eq \r(6)×eq \f(\r(3),3)=20eq \r(2),
所以AB=AF+BF=20eq \r(2)+1(m).
答案:20eq \r(2)+1
测量角度问题(师生共研)
在一次海上联合作战演习中,红方一艘侦察艇发现在北偏东45°方向,相距12 n mile的水面上,有蓝方一艘小艇正以每小时10 n mile的速度沿南偏东75°方向前进,若红方侦察艇以每小时14 n mile的速度,沿北偏东45°+α方向拦截蓝方的小艇,若要在最短的时间内拦截住,求红方侦察艇所需的时间和角α的正弦值.
【解】
如图,设红方侦察艇经过x小时后在C处追上蓝方的小艇,
则AC=14x,BC=10x,∠ABC=120°.
根据余弦定理得(14x)2=122+(10x)2-240xcs 120°,
解得x=2.故AC=28,BC=20.
根据正弦定理得eq \f(BC,sin α)=eq \f(AC,sin 120°),
解得sin α=eq \f(20sin 120°,28)=eq \f(5\r(3),14).
所以红方侦察艇所需要的时间为2小时,角α的正弦值为eq \f(5\r(3),14).
eq \a\vs4\al()
测量角度问题的基本思路
测量角度问题的关键是在弄清题意的基础上,画出表示实际问题的图形,并在图形中标出有关的角和距离,再用正弦定理或余弦定理解三角形,最后将解得的结果转化为实际问题的解.
[提醒] 方向角是相对于某点而言的,因此在确定方向角时,必须先弄清楚是哪一个点的方向角.
已知在岛A南偏西38°方向,距岛A 3海里的B处有一艘缉私艇.岛A处的一艘走私船正以10海里/小时的速度向岛北偏西22°方向行驶,问缉私艇朝何方向以多大速度行驶,恰好用0.5小时能截住该走私船?
eq \b\lc\(\rc\)(\a\vs4\al\c1(参考数据:sin 38°≈\f(5\r(3),14),sin 22°≈\f(3\r(3),14)))
解:如图,设
缉私艇在C处截住走私船,D为岛A正南方向上一点,缉私艇的速度为每小时x海里,则BC=0.5x,AC=5,依题意,∠BAC=180°-38°-22°=120°,
由余弦定理可得BC2=AB2+AC2-2AB·ACcs 120°,
所以BC2=49,所以BC=0.5x=7,解得x=14.
又由正弦定理得sin∠ABC=eq \f(AC·sin∠BAC,BC)=eq \f(5×\f(\r(3),2),7)=eq \f(5\r(3),14),所以∠ABC=38°,又∠BAD=38°,所以BC∥AD,
故缉私艇以每小时14海里的速度向正北方向行驶,恰好用0.5小时截住该走私船.
求解几何计算问题(师生共研)
(2020·湖南衡阳第三次联考)如图,在平面四边形ABCD中,0
相关学案
这是一份2023届高考一轮复习讲义(理科)第四章 三角函数、解三角形 第6讲 高效演练分层突破学案,共7页。
这是一份2023届高考一轮复习讲义(理科)第四章 三角函数、解三角形 第7讲 高效演练分层突破学案,共8页。
这是一份2023届高考一轮复习讲义(理科)第四章 三角函数、解三角形 第4讲 高效演练分层突破学案,共9页。