初中数学人教版八年级下册16.3 二次根式的加减教案
展开
这是一份初中数学人教版八年级下册16.3 二次根式的加减教案,共2页。教案主要包含了教学目标,教学重点,教学难点,教学活动设计等内容,欢迎下载使用。
1.能根据运算律和相关法则进行二次根式的混合运算。
2.会说出二次根式四则运算的依据并用这些依据评估运算的正确性。
3.积极参与数学活动,形成合作交流、独立思考,注重细节的学习习惯。
【教学重点】综合运用运算法则和运算律进行二次根式的运算。
【教学难点】正确的进行二次根式的混合运算,运用整式的运算法则、乘法公式等简化二次根式的运算。
【教学活动设计】
一.创设情境,复习引入
1.(1)整式混合运算的顺序是: 。
(2)二次根式的乘除法法则是: 。
(3)写出已经学过的乘法公式: = 1 \* GB3 ① = 2 \* GB3 ② 二
(4)二次根式的加减法的步骤是:
教师点拨:二次根式的加减主要归纳为三个步骤:第一步,先将二次根式化成最简二次根式;第二步,再找被开方数相同的二次根式;第三步,再将被开方数相同的二次根式进行合并。简单说成就是:一化,二找,三合并。
2.计算下列各题,并说明每个步骤依据;
(1) (2)
二.合作探究,形成知识
活动1:探究二次根式的混合运算
例1计算:(1)()× (2)
提问:(1)中,先计算什么?后计算什么,最后的目标是什么?(2)呢?
教师点拨:与有理数、实数运算一样,在混合运算中先乘除,后加减;
对于(1):先算乘,再化简,若有相同的二次根式进行合并,最后的目标是二次根式是最简二次根式;
对于(2):先算除,再化简,若有相同的二次根式进行合并,把所有的二次根式化成最简二次根式.
计算完后,提问:(1)中,每一步的依据是什么?(2)中,每一步的依据是什么?
教师点拨:(1)中,第一步的依据,分配律或多项式乘单项式;
第二步的依据,二次根式乘法法则;
第三步的依据,二次根式化简。
(2)中,第一步的依据,多项式除以单项式法则;
第二步的依据,二次根式除法法则。
活动2:探究运用多项式的乘法法则和整式乘法公式进行二次根式的混合运算
例2计算:(1) (3)
思考1:(1)(2)(3)中,每一步的依据是什么?
师生活动:学生思考,独立完成;然后和同桌互相探讨解决步骤。
教师点拨:在二次根式的运算中,多项式乘法法则和乘法公式仍然适用。
(1)中第一步的依据,多项式乘多项式法则;第二步的依据,二次根式化简,合并被开方数;相同的二次根式(依据是:分配律);第三步的依据,合并同类项。
(2)的依据,平方差公式。
(3)的依据,完全平方公式。
思考2:为什么二次根式运算中可以用乘法公式?
教师点拨:整式的运算法则和乘法公式中的字母意义非常广泛,可以是单项式、多项式,也可以代表二次根式,所以整式的运算法则和乘法公式适用于二次根式的运算,来简化运算。
三.初步应用,巩固知识
活动3
1.填空:
= =
2计算:
师生活动:学生独立完成,展示过程。
教师点拨:在进行二次根式加减混合运算时能用乘法公式的,运用公式会使计算简便.
四.综合应用,深化提高
活动4
1.已知求下面式子的近似值(结果精确到0.01)
2.已知x=+1,y=-1,求下列各式的值:(1)x2+2xy+y2 (2)x2-y2
3.计算
4.已知,求的值。
师生活动:学生独立完成后交流、展示。
教师点拨:这类计算的简便方法是先变形,再代入求值.
五.课堂小结 通过本节的学习,你认为二次根式运算时应关注哪些方面?通常用到哪些知识?
六.作业 课本15-4,5,6,7,8,9
相关教案
这是一份人教版八年级下册16.3 二次根式的加减教案设计,共5页。教案主要包含了自主学习,巩固练习,学生小组交流解疑,教师点拨,课堂检测等内容,欢迎下载使用。
这是一份初中数学人教版八年级下册16.3 二次根式的加减教案及反思,共5页。教案主要包含了问题,课堂小结等内容,欢迎下载使用。
这是一份初中数学人教版八年级下册16.3 二次根式的加减教学设计,共4页。