


黑龙江省大庆市林甸县五校2021-2022学年九年级上学期期末联考数学试题(word版 含答案)
展开选择题:(每小题3分,共30分)
1.下列计算正确的是( )
A.a2•a3=a6B.(﹣a2)3=a6
C.(ab)2=a2b2D.(a﹣b)2=a2﹣b2
2.在Rt△ABC中,有下列情况,则直角三角形可解的是( )
A.已知BC=6,∠C=90° B.已知∠C=90°,∠A=60°,BC=5
C.已知∠C=90°,∠A=∠B D.已知∠C=∠B=45°
3. 下列说法正确的是( )
A.相等的圆心角所对的弧相等,所对的弦相等;
B.平分弦的直径垂直于弦,并且平分弦所对的弧;
C.等弧所对的圆心角相等,所对的弦相等;
D.圆是轴对称图形,其对称轴是任意一条直径.
4.下列图形中,△ABC与△DEF不一定相似的是( )
A.B.
C.D.
5.如图,AB是河堤横断面的迎水坡,堤高AC=,水平距离BC=1,则斜坡AB的坡度为( )
A.B.C.30°D.60°
6.小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=2,c=1,解出其中一个根是x=1.他核对时发现所抄的b比原方程的b值小1.则原方程的根的情况是( )
A.不存在实数根B.有两个不相等的实数根
C.有另一个根是x=﹣1D.有两个相等的实数根
7.如图,若双曲线y=与边长为5的等边△AOB的边OA,AB分别相交于C,D两点,且OC=3BD,则实数k的值为( )
A.2B.C.D.1
8.若二次函数y=﹣x2+mx在﹣1≤x≤2时的最大值为3,那么m的值是( )
A.﹣4或B.﹣2或C.﹣4 或2D.﹣2或2
9.如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D,且DC+DA=12,⊙O的直径为20,则AB的长等于( )
A.8B.12C.16D.18
10.如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A(﹣1,0),B(3,0)两点,与y轴的正半轴交于点C,顶点为D,则下列结论:
①2a+b=0;
②2c<3b;
③当△ABC是等腰三角形时,a的值有2个;
④当△BCD是直角三角形时,a=﹣.
其中正确的有( )
A.1个B.2个
C.3个D.4个
二、填空题:(每小题3分,共24分)
11. 0.002021用科学记数法表示为2.021×10m,则m的值为 .
12.若关于x的不等式组,恰有2个整数解,则a的取值范围为 .
13.将△ABC纸片沿DE按如图的方式折叠.若∠C=50°,∠1=85°,则∠2等于 .
14.如图,在等腰Rt△ABC中,AC=BC=3,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B,点M运动的路径长是 .
15.如果数m使关于x的二次函数y=﹣x2+2x+m﹣4的函数值恒为负数,且使关于x的方程(m﹣2)x2+4x﹣1=0有实数根,那么所有满足条件的整数m的值的和为 .
16.如图,在Rt△ABC中,AB=AC=8,点E,F分别是AB,AC的中点,点P是扇形AEF的弧EF上任意一点,连接BP,CP,则BP+CP的最小值是 .
第16题图 第17题图 第18题图
17.一副三角板如图放置,将三角板ADE绕点A逆时针旋转α(0°<α<90°),使得三角板ADE的一边所在的直线与BC垂直,则α的度数为 .
18.如图,在△ABC中,点D是AB边上的一点,且AD=3BD,连接CD并取CD的中点E,连接BE,若∠ACD=∠BED=45°,且CD=62,则AB的长为 .
三、解答题:(共66分)
19.(4分)计算:
(π−3.14)0+3−8+23tan60°−(−2)2021∙(12)2020.
20.(4分)解方程: 2−2xx+1=3x−1
21.(5分)如图,正方形ABCD,点E,F分别在AD,CD上,且DE=CF,AF与BE相交于点G.
(1)求证:BE=AF;
(2)若AB=4,DE=1,求AG的长.
22.(5分)新冠肺炎期间,各地积极抗疫,建起了方舱医院,如图,某方舱医院内一张长200cm,高50cm的病床靠墙摆放,在上方安装空调,高度CE=250cm,下沿EF与墙垂直,出风口F离墙20cm,空调开启后,挡风板FG与EF夹角成136°,风沿FG方向吹出,为了病人不受空调风干扰,不能直接吹到病床上,请问空调安装的高度足够吗?为什么?(参考数据:sin46°≈0.72,cs46°≈0.69,tan46°≈1.04)
23.(6分)为落实我市关于开展中小学课后服务工作的要求,某学校开设了四门校本课程供学生选择:A.趣味数学;B.博乐阅读;C.快乐英语;D.硬笔书法.某年级共有100名学生选择了A课程,为了解本年级选择A课程学生的学习情况,从这100名学生中随机抽取了30名学生进行测试,将他们的成绩(百分制)分成六组,绘制成频数分布直方图.
(1)已知70≤x<80这组的数据为:72,73,75,74,79,76,76,则这组数据的中位数是 ,众数是 ;
(2)根据题中信息,估计该年级选择A课程学生成绩在80≤x<90的总人数;
(3)该年级每名学生选两门不同的课程,小张同时选择课程A和课程B的概率是多少?请用列表法或树状图的方法加以说明.
24.(8分)某网店专售一款电动牙刷,其成本为20元/支,销售中发现,该商品每天的销售量y(支)与销售单价x(元/支)之间存在如图所示的关系.
(1)请求出y与x的函数关系式;
(2)该款电动牙刷销售单价定为多少元时,每天销售利润最大?最大利润是多少元?
(3)近期武汉爆发了“新型冠状病毒”疫情,该网店店主决定从每天获得的利润中抽出200元捐赠给武汉,为了保证捐款后每天剩余利润不低于550元,如何确定该款电动牙刷的销售单价?
25.(7分)定义:如图1,点M、N把线段AB分割成AM、MN和BN,若以AM、MN、BN为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股点.已知点M、N是线段AB的勾股点,若AM=1,MN=2,则BN= .
(1)如图2,DE是△ABC的中位线,M、N是AB边的勾股点(AM<MN<NB),连接CM、CN分别交DE于点G、H.求证:G、H是线段DE的勾股点.
(2)如图3,C,D是线段AB的勾股点(AC
(1)求一次函数和反比例函数的表达式;
(2)△AOB的面积为 ;
(3)直接写出不等式kx+b>的解 ;
(4)点P在x的负半轴上,当△PAO为等腰三角形时,直接写出点P的坐标.
27.(9分)如图1,△ABC内接于 ⊙O,∠BAC的平分线AD交⊙O于点D,交BC于点E,过点D作DF∥BC,交AB的延长线于点F.
(1)求证:△BDE∽△ADB;
(2)试判断直线DF与⊙O的位置关系,并说明理由;
(3)如图2,条件不变,若BC恰好是⊙O的直径,且AB=6,AC=8,求DF的长.
28.(9分)如图,在平面直角坐标系中,矩形ABCD的边BC与x轴、y轴的交点分别为C(8,0),B(0,6),CD=5,抛物线y=ax2﹣x+c(a≠0)过B,C两点,动点M从点D开始以每秒5个单位长度的速度沿D→A→B→C的方向运动到达C点后停止运动.动点N从点O以每秒4个单位长度的速度沿OC方向运动,到达C点后,立即返回,向CO方向运动,到达O点后,又立即返回,依此在线段OC上反复运动,当点M停止运动时,点N也停止运动,设运动时间为t.
(1)求抛物线的解析式;
(2)求点D的坐标;
(3)当点M,N同时开始运动时,若以点M,D,C为顶点的三角形与以点B,O,N为顶点的三角形相似,求t的值;
(4)过点D与x轴平行的直线,交抛物线的对称轴于点Q,将线段BA沿过点B的直线翻折,点A的对称点为A',求A'Q+QN+DN的最小值.
答案:
一、选择题:
1——5 C B C A C, 6——10 ACCBB
二、填空题:
11.-3; 12. 0<a≤1; 13.15º; 14.32π; 15.0 ; 16.217; 17. 15º或60º;
18. 413.
三、解答题:
19.(4分)原式=7
20.(4分)x=-5是原方程的解(检验)
21.(5分)解:(1)证明:∵四边形ABCD是正方形,
∴∠BAE=∠ADF=90°,AB=AD=CD,
∵DE=CF,
∴AE=DF,
在△BAE和△ADF中,,
∴△BAE≌△ADF(SAS),
∴BE=AF;
(2)解:由(1)得:△BAE≌△ADF,
∴∠EBA=∠FAD,
∴∠GAE+∠AEG=90°,
∴∠AGE=90°,
∵AB=4,DE=1,
∴AE=3,
∴BE===5,
在Rt△ABE中,AB×AE=BE×AG,
∴AG==.
22. (5分)解:空调安装的高度足够.理由如下:
如图,延长FG交直线AD于点H,过F作FO⊥AD于点O,
则FO=ED=250﹣50=200(cm),AO=200﹣20=180(cm),∠HFO=136°﹣90°=46°.
∵在Rt△FHO中,tan46°=,
∴HO=FO×tan46°≈200×1.04=208>180,
∴HO>AO,
∴空调安装的高度足够.
23. (6分)解:(1)把70≤x<80这组的数据排序为:72,73,74,75,76,76,79,
则这组数据的中位数是75,众数是76,
故答案为:75 76;
(2)观察频数分布直方图,抽取的30名学生成绩在80≤x<90范围内的共有9人,所占比例为,
则估计该年级100名选择A课程的学生中成绩在80≤x<90范围内的总人数为(人);
(3)画树状图如图所示:
由树状图可知,等可能的结果共有12种,小张同时选择课程A和课程B的情况共有2种,
∴小张同时选择课程A和课程B的概率是.
24. (8分)解:(1)设 y 与 x 的函数关系式为 y=kx+b,
将(30,100),(35,50)代入 y=kx+b,
得,
解得,
∴y与x的函数关系式为 y=﹣10x+400;
(2)设该款电动牙刷每天的销售利润为w元,
由题意得 w=(x﹣20)•y
=(x﹣20)(﹣10x+400)
=﹣10x2+600x﹣8000
=﹣10(x﹣30)2+1000,
∵﹣10<0,
∴当x=30时,w有最大值,w最大值为1000.
答:该款电动牙刷销售单价定为30元时,每天销售利润最大,最大销售利润为1000 元;
(3)设捐款后每天剩余利润为 z 元,
由题意可得 z=﹣10x2+600x﹣8000﹣200
=﹣10x2+600x﹣8200,
令z=550,即﹣10x2+600x﹣8200=550,
﹣10(x2﹣60x+900)=﹣250,
x2﹣60x+900=25,
解得x1=25,x2=35,
画出每天剩余利润z关于销售单价x的函数关系图象如解图,
由图象可得:当该款电动牙刷的销售单价每支不低于25元,且不高于35元时,可保证捐款后每天剩余利润不低于550 元.
25.(7分) 解:∵点M、N是线段AB的勾股点,
∴BN===或BN===,
∴BN的长为或;
故答案为:或;
(1)如图2,
∵DE是△ABC的中位线,
∴DE∥AB,CD=AD,CE=BE,
∴CG=GM,CH=HN,
∴DG=AM,GH=MN,EH=BN,
∵M、N是AB边的勾股点(AM<MN<NB),
∴BN2=MN2+AM2,
∴BN2=MN2+AM2,
∴(BN)2=(MN)2+(AM)2,
∴EH2=GH2+DG2,
∴G、H是线段DE的勾股点;
(2)如图3,连接PD,
∵AC=PC,
∴∠A=∠APC,
∴∠PCD=2∠A,
∵C,D是线段AB的勾股点,
∴AC2+BD2=CD2,
∴PC2+BD2=CD2,
∵CD是⊙O的直径,
∴∠CPD=90°,
∴PC2+PD2=CD2,
∴PD=BD,
∴∠PDC=2∠B,
∵∠A=2∠B,
∴∠PDC=∠A,
在Rt△PCD中,∵∠PCD+∠PDC=90°,
∴2∠A+∠A=90°,
解得∠A=30°,
则∠B=∠A=15°.
26.(9分)解:(1)∵反比例函数y=经过点A(﹣3,2),
∴m=﹣6,
∵点B(1,n)在反比例函数图象上,
∴n=﹣6.
∴B(1,﹣6),
把A,B的坐标代入y=kx+b,则,解得,
∴一次函数的解析式为y=﹣2x﹣4,反比例函数的解析式为y=﹣;
(2)如图设直线AB交y轴于C,则C(0,﹣4),
∴S△AOB=S△OCA+S△OCB=×4×3+×4×1=8,
故答案为8;
(3)观察函数图象知,kx+b>的解集为0<x<1或x<﹣3,
故答案为0<x<1或x<﹣3;
(4)由题意OA==,
当AO=AP时,可得P1(﹣6,0),
当OA=OP时,可得P2(﹣,0),P4(,0)(舍去),
当PA=PO时,过点A作AJ⊥x轴于J.设OP3=P3A=x,
在Rt△AJP3中,则有x2=22+(3﹣x)2,
解得x=,
∴P3(﹣,0),
综上所述,满足条件的点P的坐标为(﹣,0)或(﹣,0)或(﹣6,0).
27.(9分)解:(1)证明:∵AD平分∠BAC,
∴∠BAD=∠DAC,
∵∠DAC=∠DBC,
∴∠DBC=∠BAD,
∵∠BDE=∠ADB,
∴△BDE∽△ADB;
(2)相切.
理由:如图1,连接OD,
∵∠BAD=∠DAC,
∴=,
∴OD⊥BC,
∵DF∥BC,
∴OD⊥DF,
∴DF与⊙O相切;
(3)如图2,过点B作BH⊥AD于点H,连接OD,
则∠BHD=90°,
∵BC是直径,
∴∠BAC=90°,
∴∠BHD=∠BAC,
∵∠BDH=∠C,
∴△BDH∽△BCA,
∴=,
∵AB=6,AC=8,
∴BC==10,
∴OB=OD=5,
∴BD==5,
∴=,
∴BH=3,
∴DH==4,AH==3,
∴AD=AH+DH=7,
∵DF与⊙O相切,
∴∠FDB=∠FAD,
∵∠F=∠F,
∴△FDB∽△FAD,
∴===,
∴AF=DF,BF=DF,
∴AB=AF﹣BF=DF﹣DF=6,
解得:DF=.
28. (9分)解:(1)将C(8,0),B(0,6)代入,得,
解得,
∴抛物线的解析式为:;
(2)如答图1,作DE⊥x轴于点E,
∵C(8,0),B(0,6),
∴OC=8,OB=6.
∴BC=10.
∵∠BOC=∠BCD=∠DEC,
∴△BOC∽△CED.
∴.
∴CE=3,DE=4.
∴OE=OC+CE=11.
∴D(11,4).
(3)若点M在DA上运动时,DM=5t,ON=4t,
当△BON∽△CDM,则,即不成立,舍去;
当△BON∽△MDC,则,即,解得:;
若点M在BC上运动时,CM=25﹣5t.
当△BON∽△MCD,则,即,
∴.
当3<t≤4时,ON=16﹣4t.
∴,
解得t1=(舍去),t2=.
当4<t≤5时,ON=4t﹣16
∴,无解;
当△BON∽△DCM,则,即,
∴ON=30﹣6t;
当3<t≤4时,ON=16﹣4t,
∴30﹣6t=16﹣4t,
解得t=7(舍去);
当4<t≤5时,ON=4t﹣16,
∴30﹣6t=4t﹣16,
解得.
综上所示:当时,△BON∽△MDC;t=时,△BON∽△MCD;时,△BON∽△DCM;
(4)如答图2,作点D关于x轴的对称点F,连接QF交x轴于点N,
∵点D(11,4),
∴点F(11,﹣4).
由得对称轴为x=5,
∴点Q(5,4).
∴,.
∴.
故A'Q+QN+DN的最小值为.
黑龙江省大庆市肇源县四校联考2023-2024学年九年级上学期开学数学试题(含答案): 这是一份黑龙江省大庆市肇源县四校联考2023-2024学年九年级上学期开学数学试题(含答案),文件包含数学月考-试题docx、答案docx等2份试卷配套教学资源,其中试卷共11页, 欢迎下载使用。
2022年黑龙江省大庆市林甸县中考联考数学试卷含解析: 这是一份2022年黑龙江省大庆市林甸县中考联考数学试卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
2021-2022学年黑龙江省大庆市林甸县五校联考九年级(上)期末数学试卷 解析版: 这是一份2021-2022学年黑龙江省大庆市林甸县五校联考九年级(上)期末数学试卷 解析版,共39页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。