终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    专题21.11一元二次方程的应用:传播比赛数字问题(重难点培优)-2021-2022学年九年级数学上册同步培优题典(解析版)【人教版】

    立即下载
    加入资料篮
    专题21.11一元二次方程的应用:传播比赛数字问题(重难点培优)-2021-2022学年九年级数学上册同步培优题典(解析版)【人教版】第1页
    专题21.11一元二次方程的应用:传播比赛数字问题(重难点培优)-2021-2022学年九年级数学上册同步培优题典(解析版)【人教版】第2页
    专题21.11一元二次方程的应用:传播比赛数字问题(重难点培优)-2021-2022学年九年级数学上册同步培优题典(解析版)【人教版】第3页
    还剩6页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题21.11一元二次方程的应用:传播比赛数字问题(重难点培优)-2021-2022学年九年级数学上册同步培优题典(解析版)【人教版】

    展开

    这是一份专题21.11一元二次方程的应用:传播比赛数字问题(重难点培优)-2021-2022学年九年级数学上册同步培优题典(解析版)【人教版】,共9页。
    2021-2022学年年级数学尖子生同步培优题典人教版】专题21.11一元二次方程的应用:传播比赛数字问题(重难点培优)姓名:__________________     班级:______________   得分:_________________注意事项:本试卷满分100分,试题共24题选择10道填空8道、解答6道答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置 一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的. 1.(2020秋•古丈县期末)新冠病毒主要是经呼吸道飞沫传播的,在无防护下传播速度很快,已知有1个人患了新冠,经过两轮传染后共有625个人患了新冠,每轮传染中平均一个人传染m人,则m的值为(  )A24 B25 C26 D27【分析】由1个人患了新冠且经过两轮传染后共有625个人患新冠,即可得出关于m的一元二次方程,解之取其正值即可得出结论.【解析】依题意,得:1+m+mm+1)=625解得:m124m2=﹣26(不合题意,舍去).故选:A2.(2020秋•开江县期末)秋冬季节为流感的高发期,有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染的人数为(  )A9 B10 C11 D12【分析】设每轮传染中平均一个人传染的人数为x,则第一轮传染了x人,第二轮传染了(x+1x人,根据第二轮传染后患流感的人数即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解析】设每轮传染中平均一个人传染的人数为x,则第一轮传染了x人,第二轮传染了(x+1x人,根据题意得:1+x+x+1x121解得:x10x=﹣12(舍去).故选:B3.(2020•武汉模拟)有5人患了流感,经过两轮传染后共有605人患流感,则第一轮后患流感的人数为(  )A10 B50 C55 D45【分析】设每轮传染中每人传染x人,根据经过两轮传染后共有605人患流感,即可得出关于x的一元二次方程,解之即可得出x的值,取其正值代入(5+5x)中即可求出结论.【解析】设每轮传染中每人传染x人,依题意,得:5+5x+x5+5x)=605整理,得:x2+2x1200解得:x110x2=﹣12(不合题意,舍去),5+5x55故选:C4.(2020秋•汉寿县期末)小明同学是一位古诗文的爱好者,在学习了一元二次方程这一章后,改编了苏轼诗词《念奴娇•赤壁怀古》:“大江东去浪淘尽,千古风流人物.而立之年督东吴,早逝英年两位数.十位恰小个位三,个位平方与寿同.哪位学子算得快,多少年华数周瑜?”假设周瑜去世时年龄的十位数字是x,则可列方程为(  )A10x+x3)=(x32 B10x+3+xx2 C10x+x+3)=(x+32 D10x+3+x=(x+32【分析】设周瑜去世时年龄的十位数字是x,根据“十位恰小个位三,个位平方与寿同”知10×十位数字+个位数字=个位数字的平方,据此列出方程可得答案.【解析】假设周瑜去世时年龄的十位数字是x,则可列方程为10x+x+3)=(x+32故选:C5.(2020秋•东海县期末)某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干,支干、小分支的总数是91.设每个支干长出x分支,则可列方程为(  )Ax2+x+191 B.(x+1291 Cx2+x91 Dx2+191【分析】由题意设每个支干长出x小分支,因为主干长出x(同样数目)支干,则又长出x2个小分支,则共有x2+x+1个分支,即可列方程.【解析】设每个支干长出x小分支,根据题意列方程得:x2+x+191故选:A6.(2021•南通模拟)肆虐的冠状病毒肺炎具有人传人性,调查发现:1人感染病毒后如果不隔离,那么经过两轮传染将累计会有225人感染(225人可以理解为三轮感染的总人数),若设1人平均感染x人,依题意可列方程(  )A1+x225 B1+x2225 C.(1+x2225 D1+1+x2 )=225【分析】此题可设1人平均感染x人,则第一轮共感染(x+1)人,第二轮共感染xx+1+x+1=(x+1x+1)人,根据题意列方程即可.【解析】设1人平均感染x人,依题意可列方程:(1+x2225故选:C7.(2019秋•绥德县期末)要组织一次排球邀请赛,参赛的每两个队之间比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x队参赛,则x满足的关系式为(  )Axx+1)=28 Bxx1)=28 Cxx+1)=28 Dxx1)=28【分析】根据参赛的每两个队之间都要比赛一场结合总共28场,即可得出关于x的一元二次方程,此题得解.【解析】设比赛组织者应邀请x队参赛,根据题意得:xx1)=4×7xx1)=28故选:D8.(2020春•沙坪坝区校级月考)某校“研学”活动小组在一次野外实践时,发现一种植物的1个主干上长出x支干,每个支干上再长出x小分支.若在1个主干上的主干、支干和小分支的数量之和是43个,则x等于(  )A4 B5 C6 D7【分析】根据在1个主干上的主干、支干和小分支的数量之和是43个,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解析】依题意,得:1+x+x243整理,得:x2+x420解得:x16x2=﹣7(不合题意,舍去).故选:C9.(2019秋•南充期末)在一次篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场.则参赛的球队数为(  )A6 B8 C9 D12【分析】设有x队参赛,根据题意列出方程即可求出答案.【解析】设有x队参赛,根据题意,可列方程为:xx1)=36解得:x9x=﹣8(舍去),故选:C10.(2019秋•大渡口区期末)为了宣传垃圾分类,小明写了一篇倡议书,决定用微博转发的方式传播.他设计了如下的传播规则:将倡议书发表在自己的微博上,再邀请n好友转发,每个好友转发之后,又邀请n互不相同的好友转发,依此类推.已知经过两轮转发后,共有111个人参与了宣传活动,则n的值为(  )A9 B10 C11 D12【分析】根据传播规则结合经过两轮转发后共有111个人参与了宣传活动,即可得出关于n的一元二次方程,解之取其正值即可得出结论.【解析】依题意,得:1+n+n2111解得:n110n2=﹣11故选:B二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020秋•锦州期末)2021年元旦联欢会上,某班同学之间互赠新年贺卡,共赠贺卡1190张,设全班有x名同学,则可列方程为 xx1)=1190 【分析】根据题意可知,每名同学都先(x1)名同学赠送贺卡,从而可以得到相应的方程,本题得以解决.【解析】由题意可得,xx1)=1190故答案为:xx1)=119012.(2019秋•海陵区校级期末)某人感染了某种病毒,经过两轮传染共感染121人.设该病毒一人平均每轮传染x人,则关于x的方程为 (1+x2121 【分析】等量关系为:1+第一轮传染的人数+第二轮传染的人数=121,把相关数值代入即可求得所求方程.【解析】∵1人患流感,一个人传染x人,∴第一轮传染x人,此时患病总人数为1+x∴第二轮传染的人数为(1+xx,此时患病总人数为1+x+1+xx∵经过两轮传染后共有121人患了流感,∴可列方程为:(1+x2121故答案为:(1+x212113.(2020•通辽)有一个人患了新冠肺炎,经过两轮传染后共有169人患了新冠肺炎,每轮传染中平均一个人传染了 12 个人.【分析】根据题意可得第一轮人数加第二轮人数,再加第三轮人数总数为169人,设平均每人感染x人,则列式为1+x+x+1x169.即可解答.【解析】设每轮传染中平均一个人传染了x个人,根据题意,得x+1+x+1x169x12x=﹣14(舍去).答:每轮传染中平均一个人传染了12个人.故答案为:1214.(2020春•哈尔滨期末)哈尔滨市南岗区中学校组织一次篮球比赛,赛制为单循环形式(每两个队之间比赛一场),计划一共安排21场比赛,设总共x学校参加比赛,列方程为 xx1)=21 【分析】根据赛制为单循环形式且共安排了21场比赛,即可得出关于x的一元二次方程,此题得解.【解析】依题意,得:xx1)=21故答案为:xx1)=2115.(2021•泗洪县模)已知3个连续整数的和为m,它们的平方和是n,且n11m8),则m 1518 【分析】设连续的整数分别为aa+1a+2,用a的代数式分别表示出mn,再建立关于a的方程求出a即可.【解析】设三个整数分别为aa+1a+2所以 m3a+3na2+a+12+a+223a2+6a+5n11m8),所以 3a2+6a+5113a5),解得a45m151816.(2020秋•泰兴市期中)如果两个连续奇数的积是323,如果设其中较小的一个奇数为x,可得方程 xx+2)=323 【分析】设其中较小的一个奇数为x,则另一个奇数为x+2,然后再根据“两个连续奇数的积是323”列出方程即可.【解析】设其中较小的一个奇数为x,由题意得:xx+2)=323故答案为:xx+2)=32317.(2020•启东市三模)“新冠肺炎”防治取得战略性成果.若有一个人患了“新冠肺炎”,经过两轮传染后共有16个人患了“新冠肺炎”,则每轮传染中平均一个人传染了 3 人.【分析】据题意可得第一轮人数加第二轮人数,再加第三轮人数总数为16人,设平均每人感染x人,则列式为1+x+x+1x16.即可解答.【解析】设每轮传染中平均一个人传染了x个人,根据题意,得x+1+x+1x16x3x=﹣5(舍去).答:每轮传染中平均一个人传染了3个人.故答案为:318.(2019秋•抚州期末)九年级8班第一小组x名同学在庆祝2020年新年之际,互送新年贺卡,表达同学间的真诚祝福,全组共送出贺卡30张,则x的值是 6 【分析】由8班第一小组共送出贺卡30张,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解析】依题意,得:xx1)=30解得:x16x2=﹣5(不合题意,舍去).故答案为:6三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2020秋•云县校级期末)某种植物的一个主干长出若干数目的支干,每个支干又长出同样数目的小分支,若主干、支干和小分支的总数是43,那么每个支干长出多少个小分支.【分析】由题意设每个支干长出的小分支的数目是x,根据“一个主干长出若干数目的支干,每个支干又长出同样数目的小分支,若主干、支干和小分支的总数是43”即可列方程求得x的值.【解析】设每个支干长出的小分支的数目是x根据题意列方程得:x2+x+143解得:x6x=﹣7(不合题意,舍去).答:每个支干长出6个小分支.20.(2020春•金华期中)在全国人民的共同努力下,新冠肺炎确诊病例逐渐减少,据统计,某地区22日累计新冠肺炎确诊病例144例,216日累计新冠肺炎确诊病例36例,那么这两周确诊病例平均每周降低的百分率是多少?【分析】根据减少率问题应用题的思路:减少率=减少数量(原数量)×100%.如:若原数是a,每次减少的百分率为x,则第一次减少后为a1+x);第二次减少后为a1x2,即 原数×(1﹣减少的百分率)2=后来数.即可解答.【解析】设这两周确诊病例平均每周降低的百分率是x由题意得:1441x236解得x10.550%x21.5(舍去),答:这两周确诊病例平均每周降低的百分率是50%21.(2020•大连二模)20203月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有256人患新冠肺炎,求:1)每轮传染中平均每个人传染了几个人?2)如果这些病毒携带者,未进行有效隔离,按照这样的传染速度,第三轮传染后,共有多少人患病?【分析】(1)设每轮传染中平均每个人传染了x个人,根据一人患病后经过两轮传染后共有256人患病,即可得出关于x的一元二次方程,解之即可得出结论;2)根据经过三轮传染后患病人数=经过两轮传染后患病人数×(1+15),即可求出结论.【解析】(1)设每轮传染中平均每个人传染了x个人,依题意,得:1+x+x1+x)=256解得:x115x2=﹣17(不合题意,舍去).答:每轮传染中平均每个人传染了15个人.2256×(1+15)=4096(人).答:按照这样的传染速度,第三轮传染后,共有4096人患病.22.(2020•揭西县模拟)新冠肺炎疫情在全球蔓延,造成了严重的人员伤亡和经济损失,其中一个原因是新冠肺炎病毒传播速度非常快.一个人如果感染某种病毒,经过了两轮的传播后被感染的总人数将达到64人.1)求这种病毒每轮传播中一个人平均感染多少人?2)按照上面的传播速度,如果传播得不到控制,经过三轮传播后一共有多少人被感染?【分析】(1)设一个人平均感染x人,根据经过了两轮的传播后被感染的总人数将达到64人,即可得出关于x的一元二次方程,解之取其正值即可得出结论;2)将x7代入(x+13中即可求出结论.【解答】(1)解:设一个人平均感染x人,可列方程:1+x+1+xx64解得:x17x2=﹣9(舍去).故这种病毒每轮传播中一个人平均感染7人;2)(7+13512(人)答:经过三轮传播后一共有512人被感染.23.(2021•惠东县二模)某校有200台学生电脑和1台教师用电脑,现在教师用电脑被某种电脑病毒感染,且该电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有16台电脑被感染.1)每轮感染中平均一台电脑会感染几台电脑?2)若病毒得不到有效控制, 四 轮感染后机房内所有电脑都被感染.【分析】(1)设每轮感染中平均一台电脑会感染x台电脑,根据“如果一台电脑被感染,经过两轮感染后就会有16台电脑被感染”,即可得出关于x的一元二次方程,解之取其正值即可得出结论;2)分别求出三轮及四轮感染后感染病毒电脑的数量,结合机房共(200+1)台电脑,即可得出结论.【解析】(1)设每轮感染中平均一台电脑会感染x台电脑,依题意得:(1+x216解得:x13x2=﹣5(不合题意,舍去).答:每轮感染中平均一台电脑会感染3台电脑.2)经过三轮感染后感染病毒的电脑数量为16×(1+3)=64(台),经过四轮感染后感染病毒的电脑数量为64×(1+3)=256(台),256200+1∴四轮感染后机房内所有电脑都被感染.故答案为:四.24.(2021•东莞市校级模)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染,请你用学过的知识分析:1)每轮感染中平均一台电脑会感染几台电脑?2)若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?【分析】(1)本题可设每轮感染中平均一台会感染x台电脑,则第一轮后共有(1+x)台被感染,第二轮后共有(1+x+x1+x)即(1+x2台被感染,利用方程即可求出x的值;23轮后共有(1+x3台被感染,比较该数同700的大小,即可作出判断.【解析】设每轮感染中平均每一台电脑会感染x台电脑,依题意得:1+x+1+xx81整理得(1+x281x+19x+1=﹣9解得x18x2=﹣10(舍去),答:每轮感染中平均每一台电脑会感染8台电脑;2)(1+x2+x1+x2=(1+x3=(1+83729700答:3轮感染后,被感染的电脑会超过700台.

    相关试卷

    数学八年级下册第17章 一元二次方程综合与测试当堂达标检测题:

    这是一份数学八年级下册第17章 一元二次方程综合与测试当堂达标检测题,文件包含专题178一元二次方程的应用传播与比赛问题重难点培优解析版docx、专题178一元二次方程的应用传播与比赛问题重难点培优原卷版docx等2份试卷配套教学资源,其中试卷共13页, 欢迎下载使用。

    专题1.10一元二次方程的应用:传播比赛数字问题(重难点培优)-2021-2022学年九年级数学上册同步培优题典【苏科版】:

    这是一份专题1.10一元二次方程的应用:传播比赛数字问题(重难点培优)-2021-2022学年九年级数学上册同步培优题典【苏科版】,文件包含专题110一元二次方程的应用传播比赛数字问题重难点培优-2021-2022学年九年级数学上册尖子生同步培优题典解析版苏科版docx、专题110一元二次方程的应用传播比赛数字问题重难点培优-2021-2022学年九年级数学上册尖子生同步培优题典原卷版苏科版docx等2份试卷配套教学资源,其中试卷共13页, 欢迎下载使用。

    专题21.10一元二次方程的应用:销售问题(重难点培优)-2021-2022学年九年级数学上册同步培优题典(解析版)【人教版】:

    这是一份专题21.10一元二次方程的应用:销售问题(重难点培优)-2021-2022学年九年级数学上册同步培优题典(解析版)【人教版】,共11页。

    • 精品推荐
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map