2022年高考数学(理数)一轮复习课时作业25《平面向量的概念及其线性运算》(教师版)
展开这是一份2022年高考数学(理数)一轮复习课时作业25《平面向量的概念及其线性运算》(教师版),共6页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
1.设D,E,F分别为△ABC的三边BC,CA,AB的中点,则eq \(EB,\s\up14(→))+eq \(FC,\s\up14(→))=( A )
A.eq \(AD,\s\up14(→)) B.eq \f(1,2)eq \(AD,\s\up14(→)) C.eq \f(1,2)eq \(BC,\s\up14(→)) D.eq \(BC,\s\up14(→))
解析:由题意得eq \(EB,\s\up14(→))+eq \(FC,\s\up14(→))=eq \f(1,2)(eq \(AB,\s\up14(→))+eq \(CB,\s\up14(→)))+eq \f(1,2)(eq \(AC,\s\up14(→))+eq \(BC,\s\up14(→)))=eq \f(1,2)(eq \(AB,\s\up14(→))+eq \(AC,\s\up14(→)))=eq \(AD,\s\up14(→)).
2.已知O是正六边形ABCDEF的中心,则与向量eq \(OA,\s\up14(→))平行的向量为( B )
A.eq \(AB,\s\up14(→))+eq \(AC,\s\up14(→)) B.eq \(AB,\s\up14(→))+eq \(BC,\s\up14(→))+eq \(CD,\s\up14(→)) C.eq \(AB,\s\up14(→))+eq \(AF,\s\up14(→))+eq \(CD,\s\up14(→)) D.eq \(AB,\s\up14(→))+eq \(CD,\s\up14(→))+eq \(DE,\s\up14(→))
解析:eq \(AB,\s\up14(→))+eq \(BC,\s\up14(→))+eq \(CD,\s\up14(→))=eq \(AD,\s\up14(→))=2eq \(AO,\s\up14(→))=-2eq \(OA,\s\up14(→)).
3.设向量a,b不共线,eq \(AB,\s\up14(→))=2a+pb,eq \(BC,\s\up14(→))=a+b,eq \(CD,\s\up14(→))=a-2b,若A,B,D三点共线,
则实数p的值为( B )
A.-2 B.-1 C.1 D.2
解析:因为eq \(BC,\s\up14(→))=a+b,eq \(CD,\s\up14(→))=a-2b,所以eq \(BD,\s\up14(→))=eq \(BC,\s\up14(→))+eq \(CD,\s\up14(→))=2a-b.又因为A,B,D三点共线,
所以eq \(AB,\s\up14(→)),eq \(BD,\s\up14(→))共线.设eq \(AB,\s\up14(→))=λeq \(BD,\s\up14(→)),所以2a+pb=λ(2a-b),所以2=2λ,p=-λ,
即λ=1,p=-1.
4.)庄严美丽的国旗和国徽上的五角星是革命和光明的象征.正五角星是一个非常优美的几何图形,且与黄金分割有着密切的联系.在如图所示的正五角星中,以A,B,C,D,E为顶点的多边形为正五边形,且eq \f(PT,AT)=eq \f(\r(5)-1,2).下列关系中正确的是( A )
A.eq \(BP,\s\up14(→))-eq \(TS,\s\up14(→))=eq \f(\r(5)+1,2)eq \(RS,\s\up14(→)) B.eq \(CQ,\s\up14(→))+eq \(TP,\s\up14(→))=eq \f(\r(5)+1,2)eq \(TS,\s\up14(→))
C.eq \(ES,\s\up14(→))-eq \(AP,\s\up14(→))=eq \f(\r(5)-1,2)eq \(BQ,\s\up14(→)) D.eq \(AT,\s\up14(→))+eq \(BQ,\s\up14(→))=eq \f(\r(5)-1,2)eq \(CR,\s\up14(→))
解析:由题意得,eq \(BP,\s\up14(→))-eq \(TS,\s\up14(→))=eq \(TE,\s\up14(→))-eq \(TS,\s\up14(→))=eq \(SE,\s\up14(→))=eq \f(\(RS,\s\up14(→)),\f(\r(5)-1,2))=eq \f(\r(5)+1,2)eq \(RS,\s\up14(→)),所以A正确;
eq \(CQ,\s\up14(→))+eq \(TP,\s\up14(→))=eq \(PA,\s\up14(→))+eq \(TP,\s\up14(→))=eq \(TA,\s\up14(→))=eq \f(\r(5)+1,2)eq \(ST,\s\up14(→)),所以B错误;
eq \(ES,\s\up14(→))-eq \(AP,\s\up14(→))=eq \(RC,\s\up14(→))-eq \(QC,\s\up14(→))=eq \(RQ,\s\up14(→))=eq \f(\r(5)-1,2)eq \(QB,\s\up14(→)),所以C错误;
eq \(AT,\s\up14(→))+eq \(BQ,\s\up14(→))=eq \(SD,\s\up14(→))+eq \(RD,\s\up14(→)),eq \f(\r(5)-1,2)eq \(CR,\s\up14(→))=eq \(RS,\s\up14(→))=eq \(RD,\s\up14(→))-eq \(SD,\s\up14(→)),若eq \(AT,\s\up14(→))+eq \(BQ,\s\up14(→))=eq \f(\r(5)-1,2)eq \(CR,\s\up14(→)),则eq \(SD,\s\up14(→))=0,不合题意,所以D错误.故选A.
5.如图,在直角梯形ABCD中,AB=2AD=2DC,E为BC边上一点,eq \(BC,\s\up14(→))=3eq \(EC,\s\up14(→)),F为AE的中点,则eq \(BF,\s\up14(→))=( C )
A.eq \f(2,3)eq \(AB,\s\up14(→))-eq \f(1,3)eq \(AD,\s\up14(→)) B.eq \f(1,3)eq \(AB,\s\up14(→))-eq \f(2,3)eq \(AD,\s\up14(→)) C.-eq \f(2,3)eq \(AB,\s\up14(→))+eq \f(1,3)eq \(AD,\s\up14(→)) D.-eq \f(1,3)eq \(AB,\s\up14(→))+eq \f(2,3)eq \(AD,\s\up14(→))
解析:eq \(BF,\s\up14(→))=eq \(BA,\s\up14(→))+eq \(AF,\s\up14(→))=eq \(BA,\s\up14(→))+eq \f(1,2)eq \(AE,\s\up14(→))=-eq \(AB,\s\up14(→))+eq \f(1,2)eq \b\lc\(\rc\)(\a\vs4\al\c1(\(AD,\s\up14(→))+\f(1,2)\(AB,\s\up14(→))+\(CE,\s\up14(→))))=-eq \(AB,\s\up14(→))+eq \f(1,2)eq \(AD,\s\up14(→))+eq \f(1,2)eq \(AB,\s\up14(→))+eq \f(1,3)eq \(CB,\s\up14(→))
=-eq \(AB,\s\up14(→))+eq \f(1,2)eq \(AD,\s\up14(→))+eq \f(1,4)eq \(AB,\s\up14(→))+eq \f(1,6)(eq \(CD,\s\up14(→))+eq \(DA,\s\up14(→))+eq \(AB,\s\up14(→)))=-eq \f(2,3)eq \(AB,\s\up14(→))+eq \f(1,3)eq \(AD,\s\up14(→)).
6.如图,在△ABC中,N为线段AC上靠近点A的三等分点,点P在线段BN上且eq \(AP,\s\up14(→))=(m+eq \f(2,11))eq \(AB,\s\up14(→))+eq \f(2,11)eq \(BC,\s\up14(→)),则实数m的值为( D )
A.1 B.eq \f(1,3) C.eq \f(9,11) D.eq \f(5,11)
解析:eq \(AP,\s\up14(→))=(m+eq \f(2,11))eq \(AB,\s\up14(→))+eq \f(2,11)eq \(BC,\s\up14(→))=(m+eq \f(2,11))eq \(AB,\s\up14(→))+eq \f(2,11)(eq \(AC,\s\up14(→))-eq \(AB,\s\up14(→)))=meq \(AB,\s\up14(→))+eq \f(2,11)eq \(AC,\s\up14(→)),
设eq \(BP,\s\up14(→))=λeq \(BN,\s\up14(→))(0≤λ≤1),则eq \(AP,\s\up14(→))=eq \(AB,\s\up14(→))+λeq \(BN,\s\up14(→))=eq \(AB,\s\up14(→))+λ(eq \(AN,\s\up14(→))-eq \(AB,\s\up14(→)))=(1-λ)eq \(AB,\s\up14(→))+λeq \(AN,\s\up14(→)),
因为eq \(AN,\s\up14(→))=eq \f(1,3)eq \(AC,\s\up14(→)),所以eq \(AP,\s\up14(→))=(1-λ)eq \(AB,\s\up14(→))+eq \f(1,3)λeq \(AC,\s\up14(→)),
则eq \b\lc\{\rc\ (\a\vs4\al\c1(m=1-λ,,\f(2,11)=\f(1,3)λ,))解得eq \b\lc\{\rc\ (\a\vs4\al\c1(λ=\f(6,11),,m=\f(5,11),))故选D.
7. 如图,在等边△ABC中,O为△ABC的重心,点D为BC边上靠近B点的四等分点,若eq \(OD,\s\up14(→))=xeq \(AB,\s\up14(→))+yeq \(AC,\s\up14(→)),则x+y=( B )
A.eq \f(1,12) B.eq \f(1,3) C.eq \f(2,3) D.eq \f(3,4)
解析:设点E为BC的中点,连接AE,可知O在AE上,由eq \(OD,\s\up14(→))=eq \(OE,\s\up14(→))+eq \(ED,\s\up14(→))=eq \f(1,3)eq \(AE,\s\up14(→))+eq \f(1,4)eq \(CB,\s\up14(→))=eq \f(1,6)(eq \(AB,\s\up14(→))+eq \(AC,\s\up14(→)))+eq \f(1,4)(eq \(AB,\s\up14(→))-eq \(AC,\s\up14(→)))=eq \f(5,12)eq \(AB,\s\up14(→))-eq \f(1,12)eq \(AC,\s\up14(→)),故x=eq \f(5,12),y=-eq \f(1,12),x+y=eq \f(1,3).故选B.
8.P是△ABC所在平面上的一点,满足eq \(PA,\s\up14(→))+eq \(PB,\s\up14(→))+eq \(PC,\s\up14(→))=2eq \(AB,\s\up14(→)),若S△ABC=6,则△PAB的面积为( A )
A.2 B.3 C.4 D.8
解析:∵eq \(PA,\s\up14(→))+eq \(PB,\s\up14(→))+eq \(PC,\s\up14(→))=2eq \(AB,\s\up14(→))=2(eq \(PB,\s\up14(→))-eq \(PA,\s\up14(→))),∴3eq \(PA,\s\up14(→))=eq \(PB,\s\up14(→))-eq \(PC,\s\up14(→))=eq \(CB,\s\up14(→)),∴eq \(PA,\s\up14(→))∥eq \(CB,\s\up14(→)),且
方向相同,∴eq \f(S△ABC,S△PAB)=eq \f(BC,AP)=eq \f(|\(CB,\s\up14(→))|,|\(PA,\s\up14(→))|)=3,∴S△PAB=eq \f(S△ABC,3)=2.
二、填空题
9.已知▱ABCD的对角线AC和BD相交于O,且eq \(OA,\s\up14(→))=a,eq \(OB,\s\up14(→))=b,则eq \(DC,\s\up14(→))=b-a,eq \(BC,\s\up14(→))=-a-b.(用a,b表示)
解析:如图,eq \(DC,\s\up14(→))=eq \(AB,\s\up14(→))=eq \(OB,\s\up14(→))-eq \(OA,\s\up14(→))=b-a,eq \(BC,\s\up14(→))=eq \(OC,\s\up14(→))-eq \(OB,\s\up14(→))=-eq \(OA,\s\up14(→))-eq \(OB,\s\up14(→))=-a-b.
10.已知S是△ABC所在平面外一点,D是SC的中点,若eq \(BD,\s\up14(→))=xeq \(AB,\s\up14(→))+yeq \(AC,\s\up14(→))+zeq \(AS,\s\up14(→)),则x+y+z=0.
解析:依题意得eq \(BD,\s\up14(→))=eq \(AD,\s\up14(→))-eq \(AB,\s\up14(→))=eq \f(1,2)(eq \(AS,\s\up14(→))+eq \(AC,\s\up14(→)))-eq \(AB,\s\up14(→))=-eq \(AB,\s\up14(→))+eq \f(1,2)eq \(AC,\s\up14(→))+eq \f(1,2)eq \(AS,\s\up14(→)),
因此x+y+z=-1+eq \f(1,2)+eq \f(1,2)=0.
11.在四边形ABCD中,eq \(AB,\s\up14(→))=a+2b,eq \(BC,\s\up14(→))=-4a-b,eq \(CD,\s\up14(→))=-5a-3b,则四边形ABCD的形状是梯形.
解析:由已知得eq \(AD,\s\up14(→))=eq \(AB,\s\up14(→))+eq \(BC,\s\up14(→))+eq \(CD,\s\up14(→))=-8a-2b=2(-4a-b)=2eq \(BC,\s\up14(→)),故eq \(AD,\s\up14(→))与eq \(BC,\s\up14(→))共线,
且|eq \(AD,\s\up14(→))|≠|eq \(BC,\s\up14(→))|,所以四边形ABCD是梯形.
12.在直角梯形ABCD中,∠A=90°,∠B=30°,AB=2eq \r(3),BC=2,点E在线段CD上,若eq \(AE,\s\up14(→))=eq \(AD,\s\up14(→))+μeq \(AB,\s\up14(→)),则μ的取值范围是eq \b\lc\[\rc\](\a\vs4\al\c1(0,\f(1,2))).
解析:由题意可求得AD=1,CD=eq \r(3),所以eq \(AB,\s\up14(→))=2eq \(DC,\s\up14(→)).
∵点E在线段CD上,∴eq \(DE,\s\up14(→))=λeq \(DC,\s\up14(→))(0≤λ≤1).
∵eq \(AE,\s\up14(→))=eq \(AD,\s\up14(→))+eq \(DE,\s\up14(→)),又eq \(AE,\s\up14(→))=eq \(AD,\s\up14(→))+μeq \(AB,\s\up14(→))=eq \(AD,\s\up14(→))+2μeq \(DC,\s\up14(→))=eq \(AD,\s\up14(→))+eq \f(2μ,λ)eq \(DE,\s\up14(→)),
∴eq \f(2μ,λ)=1,即μ=eq \f(λ,2).
∵0≤λ≤1,∴0≤μ≤eq \f(1,2).即μ的取值范围是eq \b\lc\[\rc\](\a\vs4\al\c1(0,\f(1,2))).
13.已知圆心为O,半径为1的圆上有不同的三个点A,B,C,其中eq \(OA,\s\up14(→))·eq \(OB,\s\up14(→))=0,存在实数λ,μ满足eq \(OC,\s\up14(→))+λeq \(OA,\s\up14(→))+μeq \(OB,\s\up14(→))=0,则实数λ,μ的关系为( A )
A.λ2+μ2=1 B.eq \f(1,λ)+eq \f(1,μ)=1 C.λμ=1 D.λ+μ=1
解析:解法1:取特殊点,取C点为优弧AB的中点,此时由平面向量基本定理易得
λ=μ=eq \f(\r(2),2),只有A符合.故选A.
解法2:依题意得|eq \(OA,\s\up14(→))|=|eq \(OB,\s\up14(→))|=|eq \(OC,\s\up14(→))|=1,-eq \(OC,\s\up14(→))=λeq \(OA,\s\up14(→))+μeq \(OB,\s\up14(→)),两边平方得1=λ2+μ2.
故选A.
14.在△ABC中,已知AB⊥AC,AB=AC,点M满足eq \(AM,\s\up14(→))=teq \(AB,\s\up14(→))+(1-t)eq \(AC,\s\up14(→)),若∠BAM=eq \f(π,3),
则t=eq \f(\r(3)-1,2).
解析:由题意可得eq \(AM,\s\up14(→))=teq \(AB,\s\up14(→))+eq \(AC,\s\up14(→))-teq \(AC,\s\up14(→)),所以eq \(AM,\s\up14(→))-eq \(AC,\s\up14(→))=teq \(AB,\s\up14(→))-teq \(AC,\s\up14(→)),即eq \(CM,\s\up14(→))=teq \(CB,\s\up14(→)),
所以eq \(CM,\s\up14(→))与eq \(CB,\s\up14(→))共线,即B,M,C三点共线,且t=eq \f(|\(CM,\s\up14(→))|,|\(CB,\s\up14(→))|).又由条件知|eq \(BC,\s\up14(→))|=eq \r(2)|eq \(AC,\s\up14(→))|,
所以t=eq \f(|\(CM,\s\up14(→))|,\r(2)|\(AC,\s\up14(→))|).在△ABC中,由正弦定理知eq \f(|\(CM,\s\up14(→))|,|\(AC,\s\up14(→))|)=eq \f(sin30°,sin105°)=eq \f(\f(1,2),\f(\r(6)+\r(2),4))=eq \f(2,\r(6)+\r(2)),
所以t=eq \f(2,\r(2)×\r(6)+\r(2))=eq \f(\r(3)-1,2).
15.P,Q为三角形ABC中不同两点,若eq \(PA,\s\up14(→))+eq \(PB,\s\up14(→))+eq \(PC,\s\up14(→))=eq \(AB,\s\up14(→)),eq \(QA,\s\up14(→))+3eq \(QB,\s\up14(→))+5eq \(QC,\s\up14(→))=0,则S△PAB:S△QAB为( B )
A.eq \f(1,3) B.eq \f(3,5) C.eq \f(5,7) D.eq \f(7,9)
解析:令D为AC的中点,eq \(PA,\s\up14(→))+eq \(PB,\s\up14(→))+eq \(PC,\s\up14(→))=eq \(AB,\s\up14(→)),化为eq \(PA,\s\up14(→))+eq \(PC,\s\up14(→))=eq \(AB,\s\up14(→))-eq \(PB,\s\up14(→)),即2eq \(PD,\s\up14(→))=eq \(AP,\s\up14(→)),
可得AC=3AP,且点P在AC边上,则S△PAB=eq \f(1,2)S△ABC,设点M,N分别是AC,AB的中点,
则由eq \(QA,\s\up14(→))+3eq \(QB,\s\up14(→))+5eq \(QC,\s\up14(→))=0可得2eq \(QM,\s\up14(→))+6eq \(QN,\s\up14(→))+eq \(QC,\s\up14(→))=0,设点T是CN的中点,则2eq \(QM,\s\up14(→))+5eq \(QN,\s\up14(→))+2eq \(QT,\s\up14(→))=0,设点S是MT的中点,则4eq \(QS,\s\up14(→))+5eq \(QN,\s\up14(→))=0,因此可得S△QAB=eq \f(5,9)S△ABC,所以S△PABS△QAB=eq \f(3,5),故选B.
16.已知G是△ABC的重心,过点G作直线MN与AB,AC交于点M,N,且eq \(AM,\s\up14(→))=xeq \(AB,\s\up14(→)),eq \(AN,\s\up14(→))=yeq \(AC,\s\up14(→))(x,y>0),则3x+y的最小值是eq \f(4+2\r(3),3).
解析:如图,∵M,N,G三点共线,∴eq \(MG,\s\up14(→))=λeq \(GN,\s\up14(→)).
∴eq \(AG,\s\up14(→))-eq \(AM,\s\up14(→))=λ(eq \(AN,\s\up14(→))-eq \(AG,\s\up14(→))).∵G是△ABC的重心,∴eq \(AG,\s\up14(→))=eq \f(1,3)(eq \(AB,\s\up14(→))+eq \(AC,\s\up14(→))).
∴eq \f(1,3)(eq \(AB,\s\up14(→))+eq \(AC,\s\up14(→)))-xeq \(AB,\s\up14(→))=λyeq \(AC,\s\up14(→))-eq \f(1,3)(eq \(AB,\s\up14(→))+eq \(AC,\s\up14(→))).
∴eq \b\lc\{\rc\ (\a\vs4\al\c1(\f(1,3)-x=-\f(1,3)λ,,\f(1,3)=λy-\f(1,3)λ,))整理得(3x-1)·(3y-1)=1;
结合图象可知eq \f(1,2)≤x≤1,eq \f(1,2)≤y≤1;令3x-1=m,3y-1=neq \f(1,2)≤m≤2,eq \f(1,2)≤n≤2,
则mn=1,x=eq \f(1+m,3),y=eq \f(1+n,3).故3x+y=1+m+eq \f(1+n,3)=eq \f(4,3)+m+eq \f(n,3)≥eq \f(4,3)+2eq \r(\f(1,3)mn)=eq \f(4,3)+eq \f(2\r(3),3),
当且仅当m=eq \f(\r(3),3),n=eq \r(3)时等号成立.
相关试卷
这是一份高考数学(文数)一轮复习课时练习:4.1《平面向量的概念及线性运算》(教师版),共9页。试卷主要包含了故选A.等内容,欢迎下载使用。
这是一份高考数学(理数)一轮复习:课时达标检测24《平面向量的概念及线性运算》(教师版)
这是一份高考数学(理数)一轮复习课时作业26《平面向量的概念及其线性运算》(原卷版),共3页。