2022年高考数学(理数)一轮复习课时作业47《圆的方程》(教师版)
展开
这是一份2022年高考数学(理数)一轮复习课时作业47《圆的方程》(教师版),共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
1.已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y+3=0相切,则圆C的方程是( A )
A.(x+1)2+y2=2 B.(x+1)2+y2=8
C.(x-1)2+y2=2 D.(x-1)2+y2=8
解析:直线x-y+1=0与x轴的交点为(-1,0).根据题意,圆C的圆心坐标为(-1,0).因为圆与直线x+y+3=0相切,所以半径为圆心到切线的距离,即r=d=eq \f(|-1+0+3|,\r(12+12))=eq \r(2),则圆的方程为(x+1)2+y2=2.故选A.
2.以(a,1)为圆心,且与两条直线2x-y+4=0与2x-y-6=0同时相切的圆的标准方程为( A )
A.(x-1)2+(y-1)2=5
B.(x+1)2+(y+1)2=5
C.(x-1)2+y2=5
D.x2+(y-1)2=5
解析:因为两平行直线2x-y+4=0与2x-y-6=0的距离为d=eq \f(|-6-4|,\r(5))=2eq \r(5).故所求圆的半径为r=eq \r(5),所以圆心(a,1)到直线2x-y+4=0的距离为eq \r(5)=eq \f(|2a+3|,\r(5)),即a=1或a=-4.又因为圆心(a,1)到直线2x-y-6=0的距离也为r=eq \r(5),所以a=1.因此所求圆的标准方程为(x-1)2+(y-1)2=5.故选A.
3.已知直线l:x+my+4=0,若曲线x2+y2+6x-2y+1=0上存在两点P,Q关于直线l对称,则m的值为( D )
A.2 B.-2 C.1 D.-1
解析:因为曲线x2+y2+6x-2y+1=0表示的是圆,其标准方程为(x+3)2+(y-1)2=9,若圆(x+3)2+(y-1)2=9上存在两点P,Q关于直线l对称,则直线l:x+my+4=0过圆心(-3,1),所以-3+m+4=0,解得m=-1.
4.经过三点A(-1,0),B(3,0),C(1,2)的圆与y轴交于M,N两点,则|MN|=( A )
A.2eq \r(3) B.2eq \r(2)
C.3 D.4
解析:根据A,B两点的坐标特征可知圆心在直线x=1上,设圆心为P(1,m),则半径r=|m-2|,所以(m-2)2=22+m2,解得m=0,所以圆心为P(1,0),所以圆的方程为(x-1)2+y2=4,当x=0时,y=±eq \r(3),所以|MN|=2eq \r(3).
5.若过点A(3,0)的直线l与曲线(x-1)2+y2=1有公共点,则直线l斜率的取值范围为( D )
A.(-eq \r(3),eq \r(3)) B.[-eq \r(3),eq \r(3)] C.(-eq \f(\r(3),3),eq \f(\r(3),3)) D.[-eq \f(\r(3),3),eq \f(\r(3),3)]
解析:解法1:数形结合可知,直线l的斜率存在,设直线l的方程为y=k(x-3),则圆心(1,0)到直线y=k(x-3)的距离应小于等于半径1,即eq \f(|2k|,\r(1+k2))≤1,解得-eq \f(\r(3),3)≤k≤eq \f(\r(3),3),故选D.
解法2:数形结合可知,直线l的斜率存在,设为k,当k=1时,直线l的方程为x-y-3=0,圆心(1,0)到直线l的距离为eq \f(|1-0-3|,\r(12+-12))=eq \r(2)>1,直线与圆相离,故排除A,B;当k=eq \f(\r(3),3)时,直线l的方程为x-eq \r(3)y-3=0,圆心(1,0)到直线l的距离为eq \f(|1-\r(3)×0-3|,\r(12+-\r(3)2))=1,直线与圆相切,排除C,故选D.
6.在平面直角坐标系xOy中,以点(0,1)为圆心且与直线x-by+2b+1=0相切的所有圆中,半径最大的圆的标准方程为( B )
A.x2+(y-1)2=4 B.x2+(y-1)2=2
C.x2+(y-1)2=8 D.x2+(y-1)2=16
解析:直线x-by+2b+1=0过定点P(-1,2),如图.
∴圆与直线x-by+2b+1=0相切于点P时,圆的半径最大,为eq \r(2),
此时圆的标准方程为x2+(y-1)2=2,故选B.
二、填空题
7.已知圆C的圆心在x轴的正半轴上,点M(0,eq \r(5))在圆C上,且圆心到直线2x-y=0的距离为eq \f(4\r(5),5),则圆C的方程为(x-2)2+y2=9.
解析:因为圆C的圆心在x轴的正半轴上,设C(a,0),且a>0,所以圆心到直线2x-y=0的距离d=eq \f(2a,\r(5))=eq \f(4\r(5),5),解得a=2,所以圆C的半径r=|CM|=eq \r(4+5)=3,
所以圆C的方程为(x-2)2+y2=9.
8.过点M(2,2)的直线l与坐标轴的正方向分别相交于A,B两点,O为坐标原点,若△OAB的面积为8,则△OAB外接圆的标准方程是(x-2)2+(y-2)2=8.
解析:设直线l的方程为eq \f(x,a)+eq \f(y,b)=1(a>0,b>0),由直线l过点M(2,2),得eq \f(2,a)+eq \f(2,b)=1.
又S△OAB=eq \f(1,2)ab=8,所以a=4,b=4,所以△OAB是等腰直角三角形,且M是斜边AB的中点,则△OAB外接圆的圆心是点M(2,2),半径|OM|=2eq \r(2),所以△OAB外接圆的标准方程是(x-2)2+(y-2)2=8.
9.圆心在抛物线y=eq \f(1,2)x2(x
相关试卷
这是一份高考数学一轮复习课时分层作业47圆的方程含答案,文件包含高考数学一轮复习课时分层作业47参考答案docx、高考数学一轮复习课时分层作业47圆的方程含答案docx等2份试卷配套教学资源,其中试卷共11页, 欢迎下载使用。
这是一份高考数学(文数)一轮复习课时练习:8.3《圆的方程》(教师版),共4页。试卷主要包含了已知圆C经过点,且圆心为C等内容,欢迎下载使用。
这是一份高考数学(理数)一轮复习检测卷:8.2《圆的方程》 (教师版)