[中考专题]2022年广东省广州市越秀区中考数学第一次模拟试题(含详解)
展开2022年广东省广州市越秀区中考数学第一次模拟试题
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,点,为线段上两点,,且,设,则关于的方程的解是( )
A. B. C. D.
2、的值( ).
A. B.2022 C. D.-2022
3、如图,是的外接圆,,则的度数是( )
A. B. C. D.
4、下列图形绕直线旋转一周,可以得到圆柱的是( )
A. B. C. D.
5、如图,有一条直的宽纸带,按图折叠,则∠α的度数等于( )
A.50° B.65° C.75° D.80°
6、下列命题,是真命题的是( )
A.两条直线被第三条直线所截,内错角相等
B.邻补角的角平分线互相垂直
C.相等的角是对顶角
D.若,,则
7、如图,在梯形中,ADBC,过对角线交点的直线与两底分别交于点,下列结论中,错误的是( )
A. B. C. D.
8、如图,在中,.分别以点A,B为圆心,大于的长为半径画弧.两弧相交于点M和点N,作直线MN分别交BC、AB于点D和点E,若,则的度数是( )
A.22° B.24° C.26° D.28°
9、如图,在△ABC和△DEF中,AC∥DF,AC=DF,点A、D、B、E在一条直线上,下列条件不能判定△ABC≌△DEF的是( ).
A. B.
C. D.
10、已知,则∠A的补角等于( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图是某手机店今年8月至12月份手机销售额统计图,根据图中信息,可以判断该店手机销售额变化最大的相邻两个月是________(填月份).
2、程大位是我国明朝商人,珠算发明家,他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,问大、小和尚各有多少人?设大和尚人,小和尚人,根据题意可列方程组为______.
3、已知五边形是的内接正五边形,则的度数为______.
4、如图,邮局在学校(______)偏(______)(______)°方向上,距离学校是(______)米.
5、如图,中,,,,D是AB上的动点,以DC为斜边作等腰直角使,点E和点A位于CD的两侧,连接BE,BE的最小值为______.
三、解答题(5小题,每小题10分,共计50分)
1、如图所示,下图是由七块积木搭成,这几块积木都是相同的正方体,利用下面方格纸中的纵横线,画出从这个图形的正面看、左面看和上面看的图形.
2、已知抛物线的顶点为,且过点.
(1)求抛物线的解析式;
(2)将抛物线先向左平移2个单位长度,再向下平移个单位长度后得到新抛物线.
①若新抛物线与x轴交于A,B两点(点A在点B的左侧),且,求m的值;
②若,是新抛物线上的两点,当时,均有,请直接写出n的取值范围.
3、如图,已知△ABC.
(1)请用尺规在图中补充完整以下作图,保留作图痕迹:
作∠ACB的角平分线,交AB于点D;作线段CD的垂直平分线,分别交AC于点E,交BC于点F;连接DE,DF;
(2)求证:四边形CEDF是菱形.
4、如图,点,是线段上的点,点为线段的中点.在线段的延长线上,且.
(1)求作点(要求:尺规作图,不写作法,保留作图痕迹);
(2)若,,,求线段的长度;
(3)若,请说明:点是线段的中点.
5、已知点A在数轴上对应的数为a,点B在数轴上对应的数为b,且,A、B之间的距离记为或,请回答问题:
(1)直接写出a,b,的值,a=______,b=______,______.
(2)设点P在数轴上对应的数为x,若,则x=______.
(3)如图,点M,N,P是数轴上的三点,点M表示的数为4,点N表示的数为-1,动点P表示的数为x.
①若点P在点M、N之间,则______;
②若,则x=______;
③若点P表示的数是-5,现在有一蚂蚁从点P出发,以每秒1个单位长度的速度向右运动,当经过多少秒时,蚂蚁所在的点到点M、点N的距离之和是8?
-参考答案-
一、单选题
1、D
【分析】
先根据线段的和差运算求出的值,再代入,解一元一次方程即可得.
【详解】
解:,
,
,
,
解得,
则关于的方程为,
解得,
故选:D.
【点睛】
本题考查了线段的和差、一元一次方程的应用,熟练掌握方程的解法是解题关键.
2、B
【分析】
数轴上表示数的点与原点的距离是数的绝对值,根据绝对值的含义可得答案.
【详解】
解:
故选B
【点睛】
本题考查的是绝对值的含义,掌握“求解一个数的绝对值”是解本题的关键.
3、C
【分析】
在等腰三角形OCB中,求得两个底角∠OBC、∠OCB的度数,然后根据三角形的内角和求得∠COB=100°;最后由圆周角定理求得∠A的度数并作出选择.
【详解】
解:在中,,
;
,,
;
又,
,
故选:.
【点睛】
本题考查了圆周角定理,等腰三角形的性质,三角形的内角和定理,熟练掌握圆周角定理是解题的关键.
4、A
【分析】
根据面动成体,直角三角形绕直角边旋转是圆锥,矩形绕边旋转是圆柱,直角梯形绕直角边旋转是圆台,半圆案绕直径旋转是球,可得答案.
【详解】
解:A.旋转后可得圆柱,故符合题意;
B. 旋转后可得球,故不符合题意;
C. 旋转后可得圆锥,故不符合题意;
D. 旋转后可得圆台,故不符合题意;
故选:A.
【点睛】
本题考查了面动成体的知识,熟记各种图形旋转得出的立体图形是解题关键.
5、B
【分析】
根据题意得:BG∥AF,可得∠FAE=∠BED=50°,再根据折叠的性质,即可求解.
【详解】
解:如图,
根据题意得:BG∥AF,
∴∠FAE=∠BED=50°,
∵AG为折痕,
∴ .
故选:B
【点睛】
本题主要考查了图形的折叠,平行线的性质,熟练掌握两直线平行,同位角相等;图形折叠前后对应角相等是解题的关键.
6、B
【分析】
利用平行线的性质、邻补角的定义及性质、对顶角的定义等知识分别判断后即可确定正确的选项.
【详解】
解:A、两条平行直线被第三条直线所截,内错角相等,故原命题错误,是假命题,不符合题意;
、邻补角的角平分线互相垂直,正确,是真命题,符合题意;
、相等的角不一定是对顶角,故错误,是假命题,不符合题意;
、平面内,若,,则,故原命题错误,是假命题,不符合题意,
故选:.
【点睛】
考查了命题与定理的知识,解题的关键是了解平行线的性质、邻补角的定义及性质、对顶角的定义等知识,难度不大.
7、B
【分析】
根据ADBC,可得△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,再利用相似三角形的性质逐项判断即可求解.
【详解】
解:∵ADBC,
∴△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,
∴,故A正确,不符合题意;
∵ADBC,
∴△DOE∽△BOF,
∴,
∴,
∴,故B错误,符合题意;
∵ADBC,
∴△AOD∽△COB,
∴,
∴,故C正确,不符合题意;
∴ ,
∴,故D正确,不符合题意;
故选:B
【点睛】
本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键.
8、B
【分析】
由尺规作图痕迹可知MN垂直平分AB,得到DA=DB,进而得到∠DAB=∠B=50°,再利用等腰三角形的性质和三角形内角和计算出∠BAC,然后计算∠BAC-∠DAB即可.
【详解】
解:∵,
∴∠B=∠C=52°,∠BAC=180°-∠B-∠C=180°-52°-52°=76°,
由尺规作图痕迹可知:MN垂直平分AB,
∴DA=DB,
∴∠DAB=∠B=52°,
∴∠CAD=∠BAC-∠DAB=76°-52°=24°.
故选:B.
【点睛】
本题考查了线段垂直平分线的尺规作图及等腰三角形的性质等,熟练掌握线段垂直平分线的性质及等腰三角形的性质是解决本类题的关键.
9、D
【分析】
根据各个选项中的条件和全等三角形的判定可以解答本题.
【详解】
解:∵AC∥DF,
∴∠A=∠EDF,
∵AC=DF,∠A=∠EDF,添加∠C=∠F,根据ASA可以证明△ABC≌△DEF,故选项A不符合题意;
∵AC=DF,∠A=∠EDF,添加∠ABC=∠DEF,根据AAS可以证明△ABC≌△DEF,故选项B不符合题意;
∵AC=DF,∠A=∠EDF,添加AB=DE,根据SAS可以证明△ABC≌△DEF,故选项C不符合题意;
∵AC=DF,∠A=∠EDF,添加BC=EF,不可以证明△ABC≌△DEF,故选项D符合题意;
故选:D.
【点睛】
本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.
10、C
【分析】
若两个角的和为 则这两个角互为补角,根据互补的含义直接计算即可.
【详解】
解: ,
∠A的补角为:
故选C
【点睛】
本题考查的是互补的含义,掌握“利用互补的含义,求解一个角的补角”是解本题的关键.
二、填空题
1、
【分析】
计算出相邻两个月销售额的变化,然后比较其绝对值的大小.
【详解】
解:根据图中的信息可得,相邻两个月销售额的变化分别为:、、、,
∵,
∴该店手机销售额变化最大的相邻两个月是,
故答案为:
【点睛】
此题考查了有理数减法的应用以及有理数大小的比较,解题的关键是掌握有理数减法运算法则以及有理数大小比较规则.
2、
【分析】
根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程即可.
【详解】
解:设大和尚人,小和尚人,
共有大小和尚100人,
;
大和尚1人分3个,小和尚3人分1个,正好分完100个馒头,
.
联立两方程成方程组得.
故答案为:.
【点睛】
本题考查二元一次方程组的应用,解决此类问题的关键就是认真对题,从题目中提取出等量关系,根据等量关系设未知数列方程组.
3、72°度
【分析】
根据正多边形的中心角的计算公式: 计算即可.
【详解】
解:∵五边形ABCDE是⊙O的内接正五边形,
∴五边形ABCDE的中心角∠AOB的度数为 =72°,
故答案为:72°.
【点睛】
本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式:是解题的关键.
4、北
东 45 1000
【分析】
图上距离1厘米表示实际距离200米,于是即可求出它们之间的实际距离,再根据它们之间的方向关系,即可进行解答.
【详解】
解:邮局在学校北偏东45°的方向上,距离学校 1000米.
故答案为:北,东,45,1000.
【点睛】
此题主要考查了方位角,以及线段比例尺的意义的理解和灵活应用.
5、##
【分析】
以AC为斜边在AC右侧作等腰直角三角形AE1C,边E1C与AB 交于点G,连接E1E延长与AB交于点F,作BE2⊥E1F于点E2,由Rt△DCE与Rt△AE1C为等腰直角三角形,可得∠DCE=∠CDE=∠ACE1=∠CAE1=45°,于是∠ACD=∠E1CE,因此△ACD∽△E1CE,所以∠CAD=∠CE1E=30°,所以E在直线E1E上运动,当BE2⊥E1F时,BE最短,即为BE2的长.
【详解】
解:如图,以AC为斜边在AC右侧作等腰直角三角形AE1C,边E1C与AB 交于点G,连接E1E并延长与AB交于点F,作BE2⊥E1F于点E2,连接CF,
∵Rt△DCE与Rt△AE1C为等腰直角三角形,
∴∠DCE=∠CDE=∠ACE1=∠CAE1=45°,
∴∠ACD=∠E1CE,
,
∴△ACD∽△E1CE,
∴∠CAD=∠CE1E=30°,
∵D为AB上的动点,
∴E在直线E1E上运动,
当BE2⊥E1F时,BE最短,即为BE2的长.
在△AGC与△E1GF中,
∠AGC=∠E1GF,∠CAG=∠GE1F,
∴∠GFE1=∠ACG=45°,
∴∠BFE2=45°,
∵,
∴ ,
∴∠AE1C=∠AFC=90°,
∵AC=6,∠BAC=30°,∠ACB=90°,
∴BC=AC=,
又∵∠ABC=60°,
∴∠BCF=30°,
∴BF=BC=,
∴BE2=BF=,
即BE的最小值为.
故答案为:
【点睛】
本题考查了等腰直角三角形的性质,勾股定理的应用,含30度角的直角三角形的性质,相似三角形的判定和性质,熟练构造等腰直角三角形是解本题的关键.
三、解答题
1、图见解析
【分析】
从正面看从左往右3列正方形的个数依次为1,3,2;从左面看从左往右2列正方形的个数依次为3,1;从上面看从左往右3列正方形的个数依次为1,2,1;画出从正面,左面,上面看,得到的图形即可.
【详解】
解:如图所示:
【点睛】
本题考查了作图−−三视图、由三视图判断几何体,本题画几何体的三视图时应注意小正方形的数目及位置.
2、
(1)
(2)①②
【分析】
(1)二次函数的顶点式为,将点坐标代入求解的值,回代求出解析式的表达式;
(2)①平移后的解析式为,可知对称轴为直线,设点坐标到对称轴距离为,有点坐标到对称轴距离为,,,可得,解得,可知点坐标为,将坐标代入解析式解得的值即可;②由题意知该抛物线图像开口向上,对称轴为直线,点关于对称轴对称的点的横坐标为,知,解得,由时,均有可得计算求解即可
(1)
解:∵的顶点式为
∴由题意得
解得(舍去),,,
∴抛物线的解析式为.
(2)
解:①平移后的解析式为
∴对称轴为直线
∴设点坐标到对称轴距离为,点坐标到对称轴距离为
∴,
∵
∴
解得
∴点坐标为
将代入解析式解得
∴的值为8.
②解:由题意知该抛物线图像开口向上,对称轴为直线,点关于对称轴对称的点的横坐标为,
∴
解得
∵时,均有
∴
解得
∴的取值范围为.
【点睛】
本题考查了二次函数的解析式、图象的平移与性质、与x轴的交点坐标等知识.解题的关键在于对二次函数知识的熟练灵活把握.
3、
(1)见解析
(2)见解析
【分析】
(1)根据要求的步骤作角平分线和垂直平分线即可,并连接DE,DF;
(2)根据垂直平分线的性质可得,进而证明即可得,进而根据四边相等的四边形是菱形,即可证明四边形是菱形.
(1)
如图所示,即为所求,
(2)
证明:
如图,设交于点
垂直平分
在与中
四边形是菱形
【点睛】
本题考查了作角平分线和垂直平分线,菱形的判定,掌握基本作图和菱形的判定定理是解题的关键.
4、
(1)图见解析
(2)
(3)说明过程见解析
【分析】
(1)先以点为圆心、长为半径画弧,交延长线于点,再以点为圆心、长为半径画弧,交延长线于点,然后以点为圆心、长为半径画弧,交延长线于点即可得;
(2)先根据线段的和差可得,再根据线段中点的定义可得,然后根据可得,从而可得,最后根据线段的和差即可得;
(3)先根据,可得,再根据线段中点的定义可得,从而可得,据此可得.
(1)
解:如图,点即为所作.
(2)
解:,
,
点为线段的中点,
,
,
,
,
,
;
(3)
解:,,
,即,
点为线段的中点,
,
,
,即,
故点是线段的中点.
【点睛】
本题考查了作线段、与线段中点有关的计算,熟练掌握线段的和差运算是解题关键.
5、
(1)-3,2,5
(2)8或-2
(3)①5;②-3.5或6.5;③2.5秒或10.5秒
【分析】
(1)根据绝对值的非负性,确定a,b的值,利用距离公式,计算即可;
(2)根据|x|=a,则x=a或x=-a,化简计算即可;
(3)①根据数轴上的两点间的距离公式,可得绝对值等于右端数减去左端的数,确定好点位置,表示的数,写出结果即可;
②根据10>5,判定P不在M,N之间,故分点P在M的右边和点P在点N的左侧,两种情形求解即可;
③设经过t秒,则点P表示的数为-5+t,则PN=|-5+t+1|=|-4+t|,PM=|-5+t-4|=|-9+t|,
故分点P在M的右边和点P在点M、点N之间,两种情形求解即可.
(1)
∵,
∴a+3=0,b-2=0,
∴a=-3,b=2,,
故答案为:-3,2,5.
(2)
∵,
∴,
∴x=8或-2;
故答案为:8或-2.
(3)
①点P在点M、N之间,且M表示4,N表示-1,动点P表示的数为x,
∴点P在定N的右侧,在点M的左侧,
∴PN=|x+1|=x+1,PM=|x-4|=4-x,
∴.
故答案为:5;
②根据10>5,判定P不在M,N之间,
当点P在M的右边时,
∴PN=|x+1|=x+1,PM=|x-4|=x-4,
∵,
∴x+1+x-4=10,
解得x=6.5;
当点P在点N的左侧时,
∴PN=|x+1|=-1-x,PM=|x-4|=4-x,
∵,
∴-1-x +4-x =10,
解得x=-3.5;
故答案为:6.5或-3.5;
③设经过t秒,则点P表示的数为-5+t,则PN=|-5+t+1|=|-4+t|,PM=|-5+t-4|=|-9+t|,
当点P在M的右边时,∴PN=|-5+t+1|=-4+t,PM=|-5+t-4|=-9+t,
∵PM+PN=8,
∴-4+t-9+t =8,
解得t=10.5;
当点P在点N、点M之间时,
∴PN=|-5+t+1|=-4+t,PM=|-5+t-4|=9-t,
∵PM+PN=8,
∴-4+t+9-t =8,
不成立;
当点P在N的左边时,
∴PN=|-5+t+1|=-1-(t-5)=4-t,PM=|-5+t-4|=4-(t-5)=9-t,
∵PM+PN=8,
∴4-t+9-t =8,
解得t=2.5;
综上所述,经过2.5秒或10.5秒时,蚂蚁所在的点到点M、点N的距离之和是8.
【点睛】
本题考查了绝对值的非负性,数轴上两点间的距离,分类思想,绝对值的化简,正确掌握绝对值化简,灵活运用分类思想是解题的关键.
2023年广东省广州市越秀区中考数学模拟试卷: 这是一份2023年广东省广州市越秀区中考数学模拟试卷,共8页。
2023年广东省广州市越秀区名德实验学校中考模拟数学试题(含解析): 这是一份2023年广东省广州市越秀区名德实验学校中考模拟数学试题(含解析),共29页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
广东省广州市越秀区知用中学2021-2022学年中考数学模拟试题含解析: 这是一份广东省广州市越秀区知用中学2021-2022学年中考数学模拟试题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,某同学将自己7次体育测试成绩等内容,欢迎下载使用。