[中考专题]2022年最新中考数学模拟真题测评 A卷(含答案解析)
展开
这是一份[中考专题]2022年最新中考数学模拟真题测评 A卷(含答案解析),共25页。试卷主要包含了下列说法正确的是,观察下列图形,下列判断错误的是,下列说法中,正确的有,下列利用等式的性质,错误的是等内容,欢迎下载使用。
2022年最新中考数学模拟真题测评 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,矩形ABCD中,点E,点F分别是BC,CD的中点,AE交对角线BD于点G,BF交AE于点H.则的值是( )A. B. C. D.2、若菱形的周长为8,高为2,则菱形的面积为( )A.2 B.4 C.8 D.163、要使式子有意义,则( )A. B. C. D.4、下列说法正确的是( )A.等腰三角形高、中线、角平分线互相重合B.顶角相等的两个等腰三角形全等C.底角相等的两个等腰三角形全等D.等腰三角形的两个底角相等5、观察下列图形:它们都是由同样大小的圆圈按一定的规律组成,其中第1个图形有5个圆圈,第2个图形有9个圆圈,第3个图形有13个圆圈,……,按此规律,第7个图形中圆圈的个数为( )A.21 B.25 C.28 D.296、下列判断错误的是( )A.若,则 B.若,则C.若,则 D.若,则7、下列说法中,正确的有( )①射线AB和射线BA是同一条射线;②若,则点B为线段AC的中点;③连接A、B两点,使线段AB过点C;④两点的所有连线中,线段最短.A.0个 B.1个 C.2个 D.3个8、下列利用等式的性质,错误的是( )A.由,得到 B.由,得到C.由,得到 D.由,得到9、已知关于x的不等式组的解集是3≤x≤4,则a+b的值为( )A.5 B.8 C.11 D.910、如图,DE是的中位线,若,则BC的长为( )A.8 B.7 C.6 D.7.5第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,将△ADE沿直线DE翻折后与△FDE重合,DF、EF分别与边BC交于点M、N,如果DE=8,,那么MN的长是_____.2、某水果基地为提高效益,对甲、乙、丙三种水果品种进行种植对比研究.去年甲、乙、丙三种水果的种植面积之比为5:3:2,甲、乙、丙三种水果的平均亩产量之比为6:3:5.今年重新规划三种水果的种植面积,三种水果的平均亩产量和总产量都有所变化.甲品种水果的平均亩产量在去年的基础上提高了50%,乙品种水果的平均亩产量在去年的基础上提高了20%,丙品种的平均亩产量不变.其中甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,丙品种水果增加的产量占今年水果总产量的,则三种水果去年的种植总面积与今年的种植总面积之比为______.3、长方形纸片ABCD,点E、F分别在边AB、AD上,连接EF,将沿EF翻折,得到,连接CE,将翻折,得到,点恰好落在线段上,若,则__________°.4、已知点P在线段AB上,如果AP2=AB•BP,AB=4,那么AP的长是_____.5、如图,将一块三角板的直角顶点放在直尺的一边上,若∠1=34°,则∠2=_____°.三、解答题(5小题,每小题10分,共计50分)1、计算:(1);(2).2、为了打造年级体育啦啦队,某年级准备投入一笔资金为啦啦队队员配置一些花球.经过多方比较,准备在甲、乙两个商家中选择一个.已知花球单价是市场统一标价为20元,由于购买数量多,两个商家都给出了自己的优惠条件(见表):甲商家乙商家购买数量x(个)享受折扣购买数量y(个)享受折扣x≤50的部分9.5折y≤100的部分9折50<x2≤00的部分8.8折100<y≤200的部分8.5折x>200的部分8折y>200的部分8折(1)如果需要购买100个花球,请问在哪个商家购买会更便宜?(2)经年级学生干部商议,最终决定选择在乙商家购买花球,并根据实际需要分两次共购买了350个花球,且第一次购买数量小于第二次,共花费140元,请问两次分别购买了多少个花球?3、已知,,OC平分∠AON.(1)如图1,射线与射线OB均在∠MON的内部.①若,∠MOA= °;②若,直接写出∠MOA的度数(用含的式子表示);(2)如图2,射线OA在∠MON的内部,射线OB在∠MON的外部.①若,求∠MOA的度数(用含的式子表示);②若在∠MOA的内部有一条射线OD,使得,直接写出∠MOD的度数.4、二次函数的图象与y轴交于点A,将点A向右平移4个单位长度,得到点B,点B在二次函数的图象上.(1)求点B的坐标(用含的代数式表示);(2)二次函数的对称轴是直线 ;(3)已知点(,),(,),(,)在二次函数的图象上.若,比较,,的大小,并说明理由.5、如图,在等边△ABC中,D、E分别是边AC、BC上的点,且CD=CE,,点C与点F关于BD对称,连接AF、FE,FE交BD于G.(1)连接DE、DF,则DE、DF之间的数量关系是_______,并证明;(2)若,用等式表示出段BG、GF、FA三者之间的数量关系,并证明. -参考答案-一、单选题1、B【分析】取的中点,连接,交于点,则,,由,得,由,得,,则,,从而解决问题.【详解】解:矩形中,点,点分别是,的中点,,,,取的中点,连接,交于点,如图,则是的中位线,,,,,,,,,,,,,,,,,,故选:B.【点睛】本题主要考查了矩形的性质,相似三角形的判定与性质,利用相似三角形的性质表示出和的长是解题的关键.2、B【分析】根据周长求出边长,利用菱形的面积公式即可求解.【详解】∵菱形的周长为8,∴边长=2,∴菱形的面积=2×2=4,故选:B.【点睛】此题考查菱形的性质,熟练掌握菱形的面积=底×高是解题的关键.3、B【分析】根据分式有意义的条件,分母不为0,即可求得答案.【详解】解:要使式子有意义,则故选B【点睛】本题考查了分式有意义的条件,理解分式有意义的条件是“分母不为0”是解题的关键.4、D【分析】根据等腰三角形的性质和全等三角形的判定方法对选项一一分析判定即可.【详解】解:A、等腰三角形底边上的高、底边上的中线、顶角的角平分线互相重合,该选项说法错误,不符合题意;B、顶角相等的两个等腰三角形不一定全等,因为边不相等,该选项说法错误,不符合题意;C、底角相等的两个等腰三角形不一定全等,因为没有边对应相等,该选项说法错误,不符合题意;D、等腰三角形的两个底角相等,该选项说法正确,符合题意;故选:D.【点睛】本题考查等腰三角形的性质与全等判定,掌握等腰三角形的性质与等腰三角形全等判定是解题关键.5、D【分析】根据已知图形得出第n个图形中圆圈数量为1+4×n=4n+1,再将n=7代入即可得.【详解】解:∵第1个图形中圆圈数量5=1+4×1,第2个图形中圆圈数量9=1+4×2,第3个图形中圆圈数量13=1+4×3,……∴第n个图形中圆圈数量为1+4×n=4n+1,当n=7时,圆圈的数量为29,故选:D.【点睛】本题考查规律型-图形变化类问题,解题的关键是学会从特殊到一般的探究方法,学会利用规律解决问题.6、D【分析】根据等式的性质解答.【详解】解:A. 若,则,故该项不符合题意; B. 若,则,故该项不符合题意;C. 若,则,故该项不符合题意; D. 若,则(),故该项符合题意;故选:D.【点睛】此题考查了等式的性质:等式两边同时加上或减去同一个整式,等式仍然成立;等式两边同时乘或除以同一个不为0的整式,等式仍然成立.7、B【分析】①射线有方向性,描述射线时的第1个字母表示它的端点,所以①不对.②不明确A、B、C是否在同一条直线上.所以错误.③不知道C是否在线段AB上,错误.④两点之间线段最短,正确.【详解】①射线AB和射线BA的端点不同不是同一条射线.所以错误.②若AB和BC为不在同一条直线的两条线段,B就不是线段AC的中点.所以错误.③若C点不在线段AB两点的连线上,那么C点就无法过线段AB.所以错误.④两点之间线段最短,所以正确.故选:B.【点睛】本题考查了射线、线段中点的含义.解题的关键是根据两点之间线段最短,射线、线段的中点的定义,角平分线的定义对各小题分析判断即可得解.8、B【分析】根据等式的性质逐项分析即可.【详解】A.由,两边都加1,得到,正确;B.由,当c≠0时,两边除以c,得到,故不正确;C.由,两边乘以c,得到,正确;D.由,两边乘以2,得到,正确;故选B.【点睛】本题考查了等式的基本性质,正确掌握等式的性质是解题的关键.等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式.9、C【分析】分别求出每一个不等式的解集,结合不等式组的解集求出a、b的值,代入计算即可.【详解】解:解不等式x-a≥1,得:x≥a+1,解不等式x+5≤b,得:x≤b-5,∵不等式组的解集为3≤x≤4,∴a+1=3,b-5=4,∴a=2,b=9,则a+b=2+9=11,故选:C.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10、A【分析】已知DE是的中位线,,根据中位线定理即可求得BC的长.【详解】是的中位线,,,故选:A.【点睛】此题主要考查三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半;掌握中位线定理是解题的关键.二、填空题1、4【分析】先根据折叠的性质得DA=DF,∠ADE=∠FDE,再根据平行线的性质和等量代换得到∠B=∠BMD,则DB=DM,接着利用比例的性质得到FM=DM,然后证明△FMN∽△FDE,从而利用相似比可计算出MN的长.【详解】解:∵△ADE沿直线DE翻折后与△FDE重合,∴DA=DF,∠ADE=∠FDE,∵DE∥BC,∴∠ADE=∠B,∠FDE=∠BMD,∴∠B=∠BMD,∴DB=DM,∵= ,∴=2,∴=2,∴FM=DM,∵MN∥DE,∴△FMN∽△FDE,∴== ,∴MN=DE=×8=4.故答案为:4【点睛】本题主要考查了相似三角形的判定和性质,平行线分线段成比例,图形的折叠,熟练掌握相似三角形的判定和性质,平行线分线段成比例,图形的折叠性质是解题的关键.2、##【分析】设去年甲、乙、丙三种水果的种植面积分别为: 设去年甲、乙、丙三种水果的平均亩产量分别为: 设今年的种植面积分别为: 再根据题中相等关系列方程:①,②,求解: 再利用丙品种水果增加的产量占今年水果总产量的,列方程 求解 从而可得答案.【详解】解: 去年甲、乙、丙三种水果的种植面积之比为5:3:2,设去年甲、乙、丙三种水果的种植面积分别为: 去年甲、乙、丙三种水果的平均亩产量之比为6:3:5,设去年甲、乙、丙三种水果的平均亩产量分别为: 则今年甲品种水果的平均亩产量为: 乙品种水果的平均亩产量为: 丙品种的平均亩产量为 设今年的种植面积分别为: 甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,①,②,解得: 又丙品种水果增加的产量占今年水果总产量的, 解得: 所以三种水果去年的种植总面积与今年的种植总面积之比为: 故答案为:【点睛】本题考查的是三元一次方程组的应用,设出合适的未知数与参数,确定相等关系,建立方程组,寻求未知量之间的关系是解本题的关键.3、61【分析】由翻折得到,根据,得到,利用求出答案.【详解】解:由翻折得,,∵,∴,∵∴,故答案为:61.【点睛】此题考查了翻折的性质,角度的计算,正确掌握翻折的性质是解题的关键.4、2﹣2【分析】先证出点P是线段AB的黄金分割点,再由黄金分割点的定义得到AP=AB,把AB=4代入计算即可.【详解】解:∵点P在线段AB上,AP2=AB•BP,∴点P是线段AB的黄金分割点,AP>BP,∴AP=AB=×4=2﹣2,故答案为:2﹣2.【点睛】本题考查了黄金分割点,牢记黄金分割比是解题的关键.5、56【分析】先根据余角的定义求出∠3的度数,再由平行线的性质即可得出结论.【详解】解:∵∠1=34°,∴∠3=90°﹣34°=56°.∵直尺的两边互相平行,∴∠2=∠3=56°.故答案为:56.【点睛】本题考查平行线的性质、直角三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题1、(1)(2)【分析】(1)先计算单项式乘单项式,积的乘方,再合并同类项即可;(2)利用平方差公式与完全平方公式计算,在合并同类项即可.(1)解:,,;(2)解:,,.【点睛】本题考查单项式乘单项式,积的乘方混合运算,乘法公式的混合计算,掌握单项式乘单项式,积的乘方混合运算,熟记乘法公式是解题关键.2、(1)在乙商家购买会更便宜(2)第一次购买140个花球,第二次购买210个花球【分析】(1)利用总价=单价×数量,结合两个商家的优惠条件,即可分别求出在两个商家购买所需费用,比较后可得出在乙商家购买会更便宜;(2)设第一次购买m个花球,则第二次购买(350-m)个花球,分0<m≤100,100<m≤150及150<m<175三种情况考虑,根据两次购买共花费6140元,即可得出关于m的一元一次方程,解之即可得出第一次购买花球的数量,再将其代入(350-m)中即可求出第二次购买花球的数量.【小题1】解:在甲商家购买所需费用为:20×0.95×50+20×0.88×(100-50)=20×0.95×50+20×0.88×50=950+880=1830(元);在乙商家购买所需费用为20×0.9×100=1800(元).∵1830>1800,∴在乙商家购买会更便宜.【小题2】设第一次购买m个花球,则第二次购买(350-m)个花球.当0<m≤100时,20×0.9m+20×0.9×100+20×0.85×(200-100)+20×0.8(350-m-200)=6140,解得:m=120(不合题意,舍去);当100<m≤150时,20×0.9×100+20×0.85(m-100)+20×0.9×100+20×0.85×(200-100)+20×0.8(350-m-200)=6140,解得:m=140,∴350-m=350-140=210;当150<m<175时,20×0.9×100+20×0.85(m-100)+20×0.9×100+20×0.85(350-m-100)=6150≠6140,∴不存在该情况.答:第一次购买140个花球,第二次购买210个花球.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.3、(1)①40;②;(2)①;②.【分析】(1)①先根据角的和差可得,再根据角平分线的定义可得,然后根据即可得;②先根据角的和差可得,再根据角平分线的定义可得,然后根据即可得;(2)①先根据角的和差可得,再根据角平分线的定义可得,然后根据即可得;②先根据角的和差可得,从而可得,再根据即可得.【详解】解:(1)①,,平分,,,,故答案为:40;②,,平分,,,;(2)①,,平分,,,;②如图,由(2)①已得:,,,,,.【点睛】本题考查了与角平分线有关的角度计算,熟练掌握角的运算是解题关键.4、(1)B(4,);(2);(3),见解析【分析】(1)根据题意,令,即可求得的坐标,根据平移的性质即可求得点的坐标;(2)根据题意关于对称轴对称,进而根据的坐标即可求得对称轴;(3)根据(2)可知对称轴为,进而计算点与对称轴的距离,根据抛物线开口朝下,则点离对称轴越远则函数值越小,据此求解即可【详解】解:(1)∵令,∴,∴点A的坐标为(0,),∵将点A向右平移4个单位长度,得到点B,∴点B的坐标为(4,).(2) A的坐标为(0,),点B的坐标为(4,)点都在在二次函数的图象上.即关于对称轴对称对称轴为(3)∵对称轴是直线,,∴点(,),(,)在对称轴的左侧,点(,)在对称轴的右侧,∵,∴,∴,,∵,∴.【点睛】本题考查了平移的性质,二次函数的对称性,二次函数的性质,熟练掌握二次函数的性质是解题的关键.5、(1),证明见解析(2),证明见解析【分析】(1)只要证明是等边三角形,再根据轴对称的性质可得结论;(2)结论:.连接,延长,交于点,只要证明是等边三角形,即可解决问题;(1)解:,是等边三角形,,,是等边三角形,,点与点关于对称,,,故答案为:;(2)解:结论:.理由如下:连接,延长,交于点,是等边三角形,,,点与点关于对称,,,,,设,则,,,,是等边三角形,,,,且,,,,.【点睛】本题考查等边三角形的性质和判定、全等三角形的判定和性质、轴对称变换,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
相关试卷
这是一份【高频真题解析】2022年最新中考数学模拟真题测评 A卷(精选),共21页。试卷主要包含了下列各式,下列说法正确的是.,不等式+1<的负整数解有,计算12a2b4•÷的结果等于,分式方程有增根,则m为等内容,欢迎下载使用。
这是一份【真题汇编】最新中考数学模拟专项测评 A卷(含答案及解析),共25页。试卷主要包含了观察下列图形,下列各组图形中一定是相似形的是,下列计算中正确的是等内容,欢迎下载使用。
这是一份【真题汇编】最新中考数学模拟测评 卷(Ⅰ)(含答案解析),共24页。试卷主要包含了二次函数 y=ax2+bx+c,下列说法正确的是,要使式子有意义,则等内容,欢迎下载使用。