[中考专题]2022年北京市昌平区中考数学模拟真题练习 卷(Ⅱ)(精选)
展开2022年北京市昌平区中考数学模拟真题练习 卷(Ⅱ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若x=1是关于x的一元二次方程x2+ax﹣2b=0的解,则4b﹣2a的值为( )
A.﹣2 B.﹣1 C.1 D.2
2、为庆祝中国共产党成立100周年,某学校开展学习“四史”(《党史》、《新中国史》、《改革开放史》、《社会主义发展史》)交流活动,小亮从这四本书中随机选择1本进行学习心得体会分享,则他恰好选到《新中国史》这本书的概率为( )
A. B. C. D.1
3、已知4个数:,,,,其中正数的个数有( )
A.1 B. C.3 D.4
4、下列运动中,属于旋转运动的是( )
A.小明向北走了 4 米 B.一物体从高空坠下
C.电梯从 1 楼到 12 楼 D.小明在荡秋千
5、下列方程组中,二元一次方程组有( )
①;②;③;④.
A.4个 B.3个 C.2个 D.1个
6、在平面直角坐标系xOy中,点A(2,1)与点B(0,1)关于某条直线成轴对称,这条直线是( )
A.轴 B.轴
C.直线(直线上各点横坐标均为1) D.直线(直线上各点纵坐标均为1)
7、下列说法中,不正确的是( )
A.是多项式 B.的项是,,1
C.多项式的次数是4 D.的一次项系数是-4
8、在以下实数中:-0.2020020002…,,,,,,无理数的个数是( )
A.2个 B.3个 C.4个 D.5个
9、下列命题中,是真命题的是( )
A.一条线段上只有一个黄金分割点
B.各角分别相等,各边成比例的两个多边形相似
C.两条直线被一组平行线所截,所得的线段成比例
D.若2x=3y,则
10、某次知识竞赛共有20道题,规定每答对一题得10分,答错或不答都扣5分,小明得分要超过125分,他至少要答对多少道题?如果设小明答对x道题,根据题意可列不等式( )
A.10x﹣5(20﹣x)≥125 B.10x+5(20﹣x)≤125
C.10x+5(20﹣x)>125 D.10x﹣5(20﹣x)>125
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、把一些笔分给几名学生,如果每人分5支,那么余7支;如果前面的学生每人分6支,那么最后一名学生能分到笔但分到的少于3支,则共有学生___人.
2、如图,点、点是线段上的两个点,且,如果AB=5cm,CD=1cm,那么的长等于_______cm.
3、已知线段,延长AB至点C,使,反向延长AC至点D,使,则CD的长为__________.
4、用幂的形式表示:=________.
5、有这样一道题:“栖树一群鸦,鸦树不知数;三只栖一树,五只没去处;五只栖一树,闲了一棵树;请你动动脑,算出鸦树数.”前三句的意思是:一群乌鸦在树上栖息,若每棵树上栖息3只,那么有5只没处栖息;若每棵树上栖息5只,那么有一棵树上没有乌鸦.请你动动脑,该问题中乌鸦有_________只.
三、解答题(5小题,每小题10分,共计50分)
1、解方程组:.
2、先化简,再求值:,其中.
3、(数学认识)
数学是研究数量关系的一门学科,在初中几何学习的历程中,常常把角与角的数量关系转化为边与边的数量关系,把边与边的数量关系转化为角与角的数量关系.
(构造模型)
(1)如图①,已知△ABC,在直线BC上用直尺与圆规作点D,使得∠ADB=∠ACB.
(不写作法,保留作图痕迹)
(应用模型)
已知△ABC是⊙O的内接三角形,⊙O的半径为r,△ABC的周长为c.
(2)如图②,若r=5,AB=8,求c的取值范围.
(3)如图③,已知线段MN,AB是⊙O一条定长的弦,用直尺与圆规作点C,使得c=MN.(不写作法,保留作图痕迹)
4、观察以下等式:
,,,,
(1)依此规律进行下去,第5个等式为______,猜想第n个等式为______;
(2)请利用分式的运算证明你的猜想.
5、敕勒川,阴山下,天似穹庐,笼盖四野.天苍苍,野茫茫,风吹草地见牛羊,河套地区地势平坦、土地肥沃,适合大规模农牧.现有一片草场,草匀速生长,如果放牧360只羊,4周可以将草全部吃完.如果放牧210只羊,9周才能将草全部吃完.(假设每只羊每周吃的草量相等)
(1)求这片草场每周生长的草量和牧民进驻前原有草量的比;
(2)如果牧民准备在这片草场放牧8周,那么最多可以放牧多少只羊?
-参考答案-
一、单选题
1、D
【分析】
将x=1代入原方程即可求出答案.
【详解】
解:将x=1代入原方程可得:1+a-2b=0,
∴a-2b=-1,
∴原式=-2(a-2b)
=2,
故选:D.
【点睛】
本题考查一元二次方程,解题的关键是正确理解一元二次方程的解的概念,本题属于基础题型.
2、A
【分析】
直接根据概率公式求解即可.
【详解】
解:由题意得,他恰好选到《新中国史》这本书的概率为,
故选:A.
【点睛】
本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.
3、C
【分析】
化简后根据正数的定义判断即可.
【详解】
解:=1是正数,=2是正数,=1.5是正数,=-9是负数,
故选C.
【点睛】
本题考查了有理数的乘方、相反数、绝对值的意义,以及正负数的意义,正确化简各数是解答本题的关键.
4、D
【分析】
旋转定义:物体围绕一个点或一个轴作圆周运动,根据旋转定义对各选项进行一一分析即可.
【详解】
解:A. 小明向北走了 4 米,是平移,不属于旋转运动,故选项A不合题意;
B. 一物体从高空坠下,是平移,不属于旋转运动,故选项B不合题意;
C. 电梯从 1 楼到 12 楼,是平移,不属于旋转运动,故选项C不合题意;
D. 小明在荡秋千,是旋转运动,故选项D符合题意.
故选D.
【点睛】
本题考查图形旋转运动,掌握旋转定义与特征,旋转中心,旋转方向,旋转角度是解题关键.
5、C
【分析】
组成二元一次方程组的两个方程应共含有两个相同的未知数,且未知数的项最高次数都应是一次的整式方程.
【详解】
解:①、符合二元一次方程组的定义,故①符合题意;
②、第一个方程与第二个方程所含未知数共有3个,故②不符合题意;
③、符合二元一次方程组的定义,故③符合题意;
④、该方程组中第一个方程是二次方程,故④不符合题意.
故选:.
【点睛】
本题考查了二元一次方程组的定义,解题时需要掌握二元一次方程组满足三个条件:①方程组中的两个方程都是整式方程.②方程组中共含有两个未知数.③每个方程都是一次方程.
6、C
【分析】
利用成轴对称的两个点的坐标的特征,即可解题.
【详解】
根据A点和B点的纵坐标相等,即可知它们的对称轴为.
故选:C.
【点睛】
本题考查坐标与图形变化—轴对称,掌握成轴对称的两个点的坐标的特点是解答本题的关键.
7、C
【分析】
根据多项式的定义及项数、次数定义依次判断.
【详解】
解:A. 是多项式,故该项不符合题意;
B. 的项是,,1,故该项不符合题意;
C. 多项式的次数是5,故该项符合题意;
D. 的一次项系数是-4,故该项不符合题意;
故选:C.
【点睛】
此题考查了多项式的定义及项数的定义、次数的定义,正确掌握多项式的各定义是解题的关键.
8、C
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.据此解答即可.
【详解】
解:无理数有-0.2020020002…,,,,共有4个.
故选:C.
【点睛】
此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.2020020002…,等有这样规律的数.解题的关键是理解无理数的定义.
9、B
【分析】
根据黄金分割的定义对A选项进行判断;根据相似多边形的定义对B选项进行判断;根据平行线分线段成比例定理对C选项进行判断;根据比例的性质对D选项进行判断.
【详解】
解:A.一条线段上有两个黄金分割点,所以A选项不符合题意;
B.各角分别相等,各边成比例的两个多边形相似,所以B选项符合题意;
C.两条直线被一组平行线所截,所得的对应线段成比例,所以C选项不符合题意;
D.若2x=3y,则,所以D选项不符合题意.
故选:B.
【点睛】
本题考查了命题:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
10、D
【分析】
根据规定每答对一题得10分,答错或不答都扣5分,可以列出相应的不等式,从而可以解答本题.
【详解】
解:由题意可得,
10x-5(20-x)>125,
故选:D.
【点睛】
本题考查由实际问题抽象出一元一次不等式,解答本题的关键是明确题意,列出相应的不等式.
二、填空题
1、11或12
【分析】
根据每人分5支,那么余7支;如果前面的学生每人分6支,那么最后一名学生能分到笔但分到的少于3支,得出5x+7≥6(x-1)+1,且6(x-1)+3>5x+7,分别求出即可.
【详解】
解:假设共有学生x人,根据题意得出:
,
解得:10<x≤12.
因为x是正整数,所以符合条件的x的值是11或12,
故答案为:11或12.
【点睛】
此题主要考查了一元一次不等式组的应用,根据题意找出不等关系得出不等式组是解决问题的关键.
2、2
【分析】
,可知,代值求解即可.
【详解】
解:
,
故答案为:2.
【点睛】
本题考查了线段的和与差.解题的关键在于正确的表示各线段之间的数量关系.
3、12
【分析】
先求出BC=2,得到AC=AB+BC=8,根据,求出AD=4,再利用CD=AD+AC求出答案.
【详解】
解:∵,,
∴BC=2,
∴AC=AB+BC=8,
∵,
∴AD=4,
∴CD=AD+AC=4+8=12,
故答案为:12.
【点睛】
此题考查了几何图形中线段的和差计算,正确根据题意画出图形辅助解决问题是解题的关键.
4、
【分析】
根据分数指数幂的意义,利用(m、n为正整数)得出即可.
【详解】
解:.
故答案是:.
【点睛】
本题考查了分数指数幂,解决本题的关键是熟记分数指数幂的定义.
5、20
【分析】
设乌鸦有x只,树y棵,直接利用若每棵树上栖息3只,那么有5只没处栖息;若每棵树上栖息5只,那么有一棵树上没有乌鸦列出方程组,进而得出答案.
【详解】
解:设乌鸦x只,树y棵.依题意可列方程组:
.
解得,
所以,乌鸦有20只
故答案为:20.
【点睛】
此题主要考查了二元一次方程组的应用,正确得出方程组是解题关键.
三、解答题
1、
【详解】
解:,
用②①,得:,
解得:,
将代入①,得:,
解得:,
方程组的解为.
【点睛】
此题考查了解二元一次方程组,正确掌握解方程组的方法:代入法和加减法并应用解决问题是解题的关键.
2、,-1.
【分析】
先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算即可.
【详解】
解:原式=,
当时,原式=.
【点睛】
本题考查了分式的化简与求值,能正确根据分式的运算法则进行化简是解此题的关键,注意运算顺序.
3、(1)见解析;(2)16<c≤8+8;(3)见解析
【分析】
(1)可找到两个这样的点:①当点D在BC的延长线上时:以点C为圆心,AC长为半径,交BC的延长线于点D,连接AD,即为所求;②当点D在CB的延长线上时:以点A为圆心,AD长为半径,交CB的延长线于点,连接,即为所求;两种情况均可利用等腰三角形的性质及三角形外角的性质证明;
(2)考虑最极端的情况:当C与A或B重合时,则,可得此时,根据题意可得,当点C为优弧AB的中点时,连接AC并延长至D,使得,利用等腰三角形的性质及三角形外角性质可得点D的运动轨迹为一个圆,点C为优弧AB的中点时,点C即为外接圆的圆心,AC长为半径,连接CO并延长交AB于点E,连接AO,根据垂径定理及勾股定理可得,当AD为直径时,c最大即可得;
(3)依照(1)(2)的做法,方法一:第1步:作AB的垂直平分线交⊙O于点P;第2步:以点P为圆心,PA为半径作⊙P;第3步:在MN上截取AB的长度;第4步:以A为圆心,MN减去AB的长为半径画弧交⊙P于点E;第5步:连接AE交⊙O于点C,即为所求;方法二:第1步:在圆上取点D,连接AD、BD,延长AD使得;第2步:作的外接圆;第3步:在MN上截取AB的长度;第4步:以点A为圆心,MN减去AB的长为半径画弧交△ABE的外接圆于点F;第5步:连接AF交⊙O于点C,即为所求.
【详解】
(1)如图所示:①当点D在BC的延长线上时:以点C为圆心,AC长为半径,交BC的延长线于点D,连接AD,即为所求;②当点D在CB的延长线上时:以点A为圆心,AD长为半径,交CB的延长线于点,连接,即为所求;
证明:①∵,
∴,
∴;
同理可证明;
(2)当C与A或B重合时,则,
∴,
∵,
∴,
如图,当点C为优弧AB的中点时,连接AC并延长至D,使得,
∴,
∵同弧所对的圆周角相等,
∴为定角,
∴为定角,
∴点D的运动轨迹为一个圆,当点C为优弧AB的中点时,点C即为外接圆的圆心,AC长为半径,连接CO并延长交AB于点E,连接AO,
由垂径定理可得:CE垂直平分AB,
∴,
在中,
,
∴,
∴,
∴AD为直径时最长,
∴最长,
∴的周长最长.
∴c最长为,
∴c的取值范围为:;
(3)方法一:
第1步:作AB的垂直平分线交⊙O于点P;
第2步:以点P为圆心,PA为半径作⊙P;
第3步:在MN上截取AB的长度;
第4步:以A为圆心,MN减去AB的长为半径画弧交⊙P于点E;
第5步:连接AE交⊙O于点C,即为所求;
方法二:
第1步:在圆上取点D,连接AD、BD,延长AD使得;
第2步:作的外接圆;
第3步:在MN上截取AB的长度;
第4步:以点A为圆心,MN减去AB的长为半径画弧交△ABE的外接圆于点F;
第5步:连接AF交⊙O于点C,即为所求.
【点睛】
题目主要考查等腰三角形的性质及三角形外角的性质,勾股定理,垂径定理,角的作法等,理解题意,综合运用各个知识点作图是解题关键.
4、
(1),
(2)见解析
【分析】
(1)根据题目中给出的等式,即可写出第5个等式,并写出第的等式;
(2)根据分式的乘法和加法可以证明猜想的正确性.
(1)
解:由题目中的等式可得,
第5个等式为:,第个等式是,
故答案为:,;
(2)
证明:左边,
右边,
左边右边,
故猜想正确.
【点睛】
本题考查分式的混合运算、数字的变化类,解答本题的关键是明确题意,写出相应的等式,并证明猜想的正确性.
5、
(1)这片草场每周生长的草量和牧民进驻前原有草量的比为
(2)最多可以放牧225只羊
【分析】
(1)设每只羊每周吃的草量为1份,这片草场牧民进驻前原有草量份,这片草场每周生长的草量为份,根据等量关系列出方程组即可;
(2)设可以放牧只羊,列出一元一次不等式,即可求解.
(1)
解:设每只羊每周吃的草量为1份,这片草场牧民进驻前原有草量份,这片草场每周生长的草量为份,
依题意得:,
解得:,
.
答:这片草场每周生长的草量和牧民进驻前原有草量的比为.
(2)
设可以放牧只羊,
依题意得:,
解得:.
答:最多可以放牧225只羊.
【点睛】
本题主要考查二元一次方程组以及一元一次不等式的实际应用,找出数量关系,列出方程组和不等式是解题的关键.
【真题汇编】中考数学模拟真题练习 卷(Ⅱ)(精选): 这是一份【真题汇编】中考数学模拟真题练习 卷(Ⅱ)(精选),共18页。试卷主要包含了已知ax2+24x+b=,观察下列图形,下列计算正确的是等内容,欢迎下载使用。
【真题汇编】2022年北京市昌平区中考数学三年真题模拟 卷(Ⅱ)(精选): 这是一份【真题汇编】2022年北京市昌平区中考数学三年真题模拟 卷(Ⅱ)(精选),共19页。试卷主要包含了如图,OM平分,,,则.,有下列说法,多项式去括号,得等内容,欢迎下载使用。
【难点解析】2022年北京市昌平区中考数学模拟真题测评 A卷(精选): 这是一份【难点解析】2022年北京市昌平区中考数学模拟真题测评 A卷(精选),共34页。试卷主要包含了下列说法中,正确的有等内容,欢迎下载使用。