[中考专题]2022年北京市昌平区中考数学三年真题模拟 卷(Ⅱ)(含答案及解析)
展开
这是一份[中考专题]2022年北京市昌平区中考数学三年真题模拟 卷(Ⅱ)(含答案及解析),共18页。试卷主要包含了多项式去括号,得,下列利用等式的性质,错误的是等内容,欢迎下载使用。
2022年北京市昌平区中考数学三年真题模拟 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、将抛物线y=2x2向下平移3个单位后的新抛物线解析式为( )A.y=2(x﹣3)2 B.y=2(x+3)2 C.y=2x2﹣3 D.y=2x2+32、如图所示,由A到B有①、②、③三条路线,最短的路线选①的理由是( )A.两点确定一条直线 B.经过一点有无数条直线C.两点之间,线段最短 D.一条线段等于已知线段3、下列命题中,是真命题的是( )A.一条线段上只有一个黄金分割点B.各角分别相等,各边成比例的两个多边形相似C.两条直线被一组平行线所截,所得的线段成比例D.若2x=3y,则4、若菱形的周长为8,高为2,则菱形的面积为( )A.2 B.4 C.8 D.165、多项式去括号,得( )A. B. C. D.6、若关于x的不等式组有且仅有3个整数解,且关于y的方程的解为负整数,则符合条件的整数a的个数为( )A.1个 B.2个 C.3个 D.4个7、若数a使关于x的方程=的解为非负数,使关于y的不等式组无解,则所有满足条件的整数a的值之和为( )A.7 B.12 C.14 D.188、在0,,1.333…,,3.14中,有理数的个数有( )A.1个 B.2个 C.3个 D.4个9、下列利用等式的性质,错误的是( )A.由,得到 B.由,得到C.由,得到 D.由,得到10、有理数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知点 P (m + 2, 3)和点 Q (2, n - 4)关于原点对称,则 m + n =_____.2、如图,是用若干个边长为1的小正方体堆积而成的几何体,该几何体的左视图的面积为__________3、如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,将△ADE沿直线DE翻折后与△FDE重合,DF、EF分别与边BC交于点M、N,如果DE=8,,那么MN的长是_____.4、计算:=______.5、如图,C是线段AB延长线上一点,D为线段BC上一点,且,E为线段AC上一点,,若,则_________.三、解答题(5小题,每小题10分,共计50分)1、已知,,OC平分∠AON.(1)如图1,射线与射线OB均在∠MON的内部.①若,∠MOA= °;②若,直接写出∠MOA的度数(用含的式子表示);(2)如图2,射线OA在∠MON的内部,射线OB在∠MON的外部.①若,求∠MOA的度数(用含的式子表示);②若在∠MOA的内部有一条射线OD,使得,直接写出∠MOD的度数.2、计算:(1)(2)3、点C在直线AB上,点D为AC的中点,如果CB=CD,AB=10.5cm.求线段BC的长度.4、先化简,再求值:;其中.5、已知关于x的方程x2﹣+k=0有实数根,求k的取值范围. -参考答案-一、单选题1、C【分析】根据“上加下减”的原则进行解答即可.【详解】解:将抛物线y=2x2向下平移3个单位后的新抛物线解析式为:y=2x2-3.故选:C.【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的规律是解答此题的关键.2、C【分析】根据线段的性质进行解答即可.【详解】解:最短的路线选①的理由是两点之间,线段最短,故选:C.【点睛】本题主要考查了线段的性质,解题的关键是掌握两点之间,线段最短.3、B【分析】根据黄金分割的定义对A选项进行判断;根据相似多边形的定义对B选项进行判断;根据平行线分线段成比例定理对C选项进行判断;根据比例的性质对D选项进行判断.【详解】解:A.一条线段上有两个黄金分割点,所以A选项不符合题意;B.各角分别相等,各边成比例的两个多边形相似,所以B选项符合题意;C.两条直线被一组平行线所截,所得的对应线段成比例,所以C选项不符合题意;D.若2x=3y,则,所以D选项不符合题意.故选:B.【点睛】本题考查了命题:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.4、B【分析】根据周长求出边长,利用菱形的面积公式即可求解.【详解】∵菱形的周长为8,∴边长=2,∴菱形的面积=2×2=4,故选:B.【点睛】此题考查菱形的性质,熟练掌握菱形的面积=底×高是解题的关键.5、D【分析】利用去括号法则变形即可得到结果.【详解】解:−2(x−2)=-2x+4,故选:D.【点睛】本题考查了去括号与添括号,掌握如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反是解题的关键.6、C【分析】解不等式组得到,利用不等式组有且仅有3个整数解得到,再解分式方程得到,根据解为负整数,得到a的取值,再取共同部分即可.【详解】解:解不等式组得:,∵不等式组有且仅有3个整数解,∴,解得:,解方程得:,∵方程的解为负整数,∴,∴,∴a的值为:-13、-11、-9、-7、-5、-3,…,∴符合条件的整数a为:-13,-11,-9,共3个,故选C.【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.7、C【分析】第一步:先用a的代数式表示分式方程的解.再根据方程的解为非负数,x-3≠0,列不等式组,解出解集,第二步解出不等式组的解集,根据不等式组无解,列不等式求出解集,根据这两步中m的取值范围进行综合考虑确定最后m的取值范围,最后根据a为整数确定最后结果.【详解】解:,2a-8=x-3,x=2a-5,∵方程的解为非负数,x-3≠0,∴,解得a≥且a≠4,,解不等式组得:,∵不等式组无解,∴5-2a≥-7,解得a≤6,∴a的取值范围:≤a≤6且a≠4,∴满足条件的整数a的值为3、5、6,∴3+5+6=14,故选:C.【点睛】本题考查分式方程的解、解一元一次不等式组、解一元一次不等式,掌握用含a的式子表示方程的解,根据方程的解为非负数,根据不等式组无解,两个条件结合求出m的取值范围是解题关键.8、D【分析】根据有理数的定义:整数和分数统称为有理数,进行求解即可.【详解】解:0是整数,是有理数;是无限不循环小数,不是有理数;是分数,是有理数;是分数,是有理数;3.14是有限小数,是分数,是有理数,故选D.【点睛】此题考查有理数的定义,熟记定义并运用解题是关键.9、B【分析】根据等式的性质逐项分析即可.【详解】A.由,两边都加1,得到,正确;B.由,当c≠0时,两边除以c,得到,故不正确;C.由,两边乘以c,得到,正确;D.由,两边乘以2,得到,正确;故选B.【点睛】本题考查了等式的基本性质,正确掌握等式的性质是解题的关键.等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式.10、C【分析】由数轴可得: 再逐一判断的符号即可.【详解】解:由数轴可得: 故A,B,D不符合题意,C符合题意;故选C【点睛】本题考查的是利用数轴比较有理数的大小,绝对值的含义,有理数的加法,减法,乘法的结果的符号确定,掌握以上基础知识是解本题的关键.二、填空题1、-3【分析】求解的值,然后代入求解即可.【详解】解:由题意知解得∴故答案为:.【点睛】本题考查了关于原点对称的点坐标的特征.解题的关键在于明确关于原点对称的点坐标的横、纵坐标均互为相反数.2、3【分析】由题意,先画出几何体的左视图,然后计算面积即可.【详解】解:根据题意,该几何体的左视图为:∴该几何体的左视图的面积为3;故答案为:3.【点睛】本题考查了简单几何体的三视图,解题的关键是正确的画出左视图.3、4【分析】先根据折叠的性质得DA=DF,∠ADE=∠FDE,再根据平行线的性质和等量代换得到∠B=∠BMD,则DB=DM,接着利用比例的性质得到FM=DM,然后证明△FMN∽△FDE,从而利用相似比可计算出MN的长.【详解】解:∵△ADE沿直线DE翻折后与△FDE重合,∴DA=DF,∠ADE=∠FDE,∵DE∥BC,∴∠ADE=∠B,∠FDE=∠BMD,∴∠B=∠BMD,∴DB=DM,∵= ,∴=2,∴=2,∴FM=DM,∵MN∥DE,∴△FMN∽△FDE,∴== ,∴MN=DE=×8=4.故答案为:4【点睛】本题主要考查了相似三角形的判定和性质,平行线分线段成比例,图形的折叠,熟练掌握相似三角形的判定和性质,平行线分线段成比例,图形的折叠性质是解题的关键.4、2【分析】根据二次根式乘除法运算法则进行计算即可得到答案.【详解】解:原式,故答案为:.【点睛】此题主要考查了二次根式的乘除运算,掌握运算法则是解答此题的关键.5、3【分析】设BD=a,AE=b,则CD=2a,CE=2b,根据AB=AE+BE=AE+DE-BD代入计算即可.【详解】设BD=a,AE=b,∵,,∴CD=2a,CE=2b,∴DE=CE-CD=2b-2a=2即b-a=1,∴AB=AE+BE=AE+DE-BD=2+b-a=2+1=3,故答案为:3.【点睛】本题考查了线段的和与差,正确用线段的和差表示线段是解题的关键.三、解答题1、(1)①40;②;(2)①;②.【分析】(1)①先根据角的和差可得,再根据角平分线的定义可得,然后根据即可得;②先根据角的和差可得,再根据角平分线的定义可得,然后根据即可得;(2)①先根据角的和差可得,再根据角平分线的定义可得,然后根据即可得;②先根据角的和差可得,从而可得,再根据即可得.【详解】解:(1)①,,平分,,,,故答案为:40;②,,平分,,,;(2)①,,平分,,,;②如图,由(2)①已得:,,,,,.【点睛】本题考查了与角平分线有关的角度计算,熟练掌握角的运算是解题关键.2、(1)原式(2)原式【分析】(1)先算乘除,再算加减;(2)先做括号内的运算,按小括号、中括号依次进行,然后先乘方,再乘除,最后再加减.(1)解:原式(2)解:原式【点睛】本题考查有理数的混合运算.应注意以下运算顺序:①先乘方,再乘除,最后加减;②同级运算,从左到右进行;③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.3、4.5cm【分析】根据题意画出图形,由线段中点定义得到AC=2CD,进而得到,求出CD,AC,即可求出段BC的长度.【详解】解:如图,∵点D为AC的中点,∴AC=2CD,∵AB=10.5cm,CB=CD,AC+BC=AB,∴,解得CD=3cm,∴AC=6cm,∴BC=AB-AC=4.5cm..【点睛】此题考查了线段的和差计算,正确掌握线段中点定义,依据题意作出图形辅助解决问题是解题的关键.4、,3【分析】先算括号里面的,然后把除号化为乘号进行约分,最后代入求值即可得出答案.【详解】原式当时,原式.【点睛】本题考查分式的化简求值,掌握分式混合运算的运算顺序和计算法则是解题关键.5、【分析】根据根的判别式的意义得到△,还有被开方式,然后解不等式组即可.【详解】解:根据题意得△且,解得:.【点睛】本题考查了根的判别式:一元二次方程的根与△有如下关系:当△时,方程有两个不相等的两个实数根;当△时,方程有两个相等的两个实数根;当△时,方程无实数根,本题关键还应考虑被开方式非负.
相关试卷
这是一份[中考专题]2022年北京市昌平区中考数学历年真题汇总 (A)卷(含答案解析),共22页。试卷主要包含了如图,点C,下列命题中,真命题是,如图,在中,,,则的值为等内容,欢迎下载使用。
这是一份【真题汇总卷】2022年北京市昌平区中考数学真题模拟测评 (A)卷(含答案及解析),共22页。试卷主要包含了要使式子有意义,则,下列利用等式的性质,错误的是等内容,欢迎下载使用。
这是一份【中考专题】2022年北京市昌平区中考数学模拟真题测评 A卷(含答案详解),共25页。试卷主要包含了已知,,且,则的值为,下列命题正确的是等内容,欢迎下载使用。