![[中考专题]2022年北京市海淀区中考数学模拟专项测试 B卷(含答案详解)第1页](http://img-preview.51jiaoxi.com/2/3/12673419/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![[中考专题]2022年北京市海淀区中考数学模拟专项测试 B卷(含答案详解)第2页](http://img-preview.51jiaoxi.com/2/3/12673419/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![[中考专题]2022年北京市海淀区中考数学模拟专项测试 B卷(含答案详解)第3页](http://img-preview.51jiaoxi.com/2/3/12673419/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
[中考专题]2022年北京市海淀区中考数学模拟专项测试 B卷(含答案详解)
展开
这是一份[中考专题]2022年北京市海淀区中考数学模拟专项测试 B卷(含答案详解),共21页。试卷主要包含了已知4个数,下列各组图形中一定是相似形的是等内容,欢迎下载使用。
2022年北京市海淀区中考数学模拟专项测试 B卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、人类的遗传物质是DNA,其中最短的22号染色体含 30000000个核苷酸,30000000用科学记数法表示为( )A.3×106 B.3×107 C.3×108 D.0.3×1082、菱形ABCD的周长是8cm,∠ABC=60°,那么这个菱形的对角线BD的长是( )A.cm B.2cm C.1cm D.2cm3、工人常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使CM=CN,过角尺顶点C作射线OC,由此作法便可得△NOC≌△MOC,其依据是( )A.SSS B.SAS C.ASA D.AAS4、平面直角坐标系中,点P(2,1)关于x轴对称的点的坐标是( )A. B. C. D.5、已知4个数:,,,,其中正数的个数有( )A.1 B. C.3 D.46、神舟号载人飞船于2021年10月16日凌晨成功对接中国空间站,自升空以来神舟十三号飞船每天绕地球16圈,按地球赤道周长计算神舟十三号飞船每天飞行约641200千米,641200用科学记数法表示为( )A. B. C. D.7、《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?设这个物品的价格是x元,则可列方程为( )A. B. C. D.8、若二次函数的图象经过点,则a的值为( )A.-2 B.2 C.-1 D.19、下列各组图形中一定是相似形的是( )A.两个等腰梯形 B.两个矩形 C.两个直角三角形 D.两个等边三角形10、如果与的差是单项式,那么、的值是( )A., B., C., D.,第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若关于x的分式方程有增根,则a=________.2、如图,AC=12cm,AB=5cm,点D是BC的中点,那么CD=________________cm.3、已知点P(3m﹣6,m+1),A(﹣1,2),直线PA与x轴平行,则点P的坐标为_____.4、如图,在Rt△ABC中,∠BAC=90°,AB=6,D是边BC上一点,连接AD.将△ABD沿直线AD翻折后,点B恰好落在边AC上B'点,若AB':B'C=3:2,则点D到AC的距离是 _____.5、已知一个两位数,个位上的数字比十位上的数字小4,且个位上的数字与十位上的数字的平方和比这个两位数小4,则这个两位数是___.三、解答题(5小题,每小题10分,共计50分)1、先化简再求值:其中,2、在平面直角坐标系中,对于点,,将点关于直线对称得到点,当时,将点向上平移个单位,当时,将点向下平移个单位,得到点,我们称点为点关于点的对称平移点.例如,如图已知点,,点关于点的对称平移点为.(1)已知点,,①点关于点的对称平移点为________(直接写出答案).②若点为点关于点的对称平移点,则点的坐标为________.(直接写出答案)(2)已知点在第一、三象限的角平分线上,点的横坐标为,点的坐标为.点为点关于点的对称平移点,若以,,为顶点的三角形围成的面积为1,求的值.3、平面上有三个点A,B,O.点A在点O的北偏东方向上,,点B在点O的南偏东30°方向上,,连接AB,点C为线段AB的中点,连接OC.(1)依题意补全图形(借助量角器、刻度尺画图);(2)写出的依据:(3)比较线段OC与AC的长短并说明理由:(4)直接写出∠AOB的度数.4、如图,在离铁塔20m的A处,用测倾仪测得塔顶的仰角为53°,测倾仪高AD为1.52m.求铁塔高BC(参考数据sin53°≈0.80,cos53°≈0.60,tan53°≈1.33).5、如图1,在△ABC中,AB = AC =10,tanB =,点D为BC 边上的动点(点D不与点B ,C重合).以D为顶点作∠ADE =∠B ,射线DE交AC边于点E,过点A作AF⊥AD交射线DE于点F,连接CF.(1)当D运动到BC的中点时,直接写出AF的长;(2)求证:10CE=BD∙CD;(3)点D在运动过程中,是否存在某个位置,使得DF=CF?若存在,求出此时BD的长;若不存在,请说明理由. -参考答案-一、单选题1、B【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:30000000=3×107.故选:B.【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.2、B【分析】由菱形的性质得AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,再证△ABC是等边三角形,得AC=AB=2(cm),则OA=1(cm),然后由勾股定理求出OB=(cm),即可求解.【详解】解:∵菱形ABCD的周长为8cm,∴AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,∵∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=2cm,∴OA=1(cm),在Rt△AOB中,由勾股定理得:OB===(cm),∴BD=2OB=2(cm),故选:B.【点睛】此题考查了菱形的性质,勾股定理,等边三角形的性质和判定,解题的关键是熟练掌握菱形的性质,勾股定理,等边三角形的性质和判定方法.3、A【分析】利用边边边,可得△NOC≌△MOC,即可求解.【详解】解:∵OM=ON,CM=CN, ,∴△NOC≌△MOC(SSS).故选:A【点睛】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法——边角边、角边角、角角边、边边边是解题的关键.4、B【分析】直接利用关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,得出答案.【详解】解:点P(2,1)关于x轴对称的点的坐标是(2,-1).故选:B.【点睛】本题主要考查了关于x轴对称点的性质,正确掌握横纵坐标的关系是解题关键.5、C【分析】化简后根据正数的定义判断即可.【详解】解:=1是正数,=2是正数,=1.5是正数,=-9是负数,故选C.【点睛】本题考查了有理数的乘方、相反数、绝对值的意义,以及正负数的意义,正确化简各数是解答本题的关键.6、B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【详解】解:641200用科学记数法表示为:641200=,故选择B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7、D【分析】设这个物品的价格是x元,根据人数不变列方程即可.【详解】解:设这个物品的价格是x元,由题意得,故选D.【点睛】本题主要考查由实际问题抽象出一元一次方程,解题的关键是理解题意,确定相等关系,并据此列出方程.8、C【分析】把(-2,-4)代入函数y=ax2中,即可求a.【详解】解:把(-2,-4)代入函数y=ax2,得4a=-4,解得a=-1.故选:C.【点睛】本题考查了点与函数的关系,解题的关键是代入求值.9、D【分析】根据相似形的形状相同、大小不同的特点,再结合等腰梯形、矩形,直角三角形、等边三角形的性质与特点逐项排查即可.【详解】解:A、两个等腰梯形的形状不一定相同,则不一定相似,故本选项错误;B、两个矩形的形状不一定相同,则不一定相似,故本选项错误;C、两个直角三角形的形状不一定相同,则不一定相似,故本选项错误;D、两个等边三角形的大小不一定相同,但形状一定相同,则一定相似,故本选项正确.故选D.【点睛】本题主要考查了相似图形的定义,理解相似形的形状相同、大小不同的特点成为解答本题的关键.10、C【分析】根据与的差是单项式,判定它们是同类项,根据同类项的定义计算即可.【详解】∵与的差是单项式,∴与是同类项,∴n+2=3,2m-1=3,∴m=2, n=1,故选C.【点睛】本题考查了同类项即含有的字母相同,且相同字母的指数也相同,准确判断同类项是解题的关键.二、填空题1、【分析】分式方程去分母转化为整式方程,由分式方程有增根求出a的值即可.【详解】解:,去分母得: x−a=3-x,由分式方程有增根,得到x−3=0,即x=3,代入整式方程得:3−a=3-3,解得:a=3.故答案为:3.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.2、【分析】首先根据线段的和差求出BC的长,再利用线段的中点可得CD.【详解】∵AC=12cm,AB=5cm,∴BC=AC﹣AB=7cm,∵点D是BC的中点,∴CD=BC=cm.故答案为:.【点睛】本题考查线段的和差,掌握线段中点的定义是解题关键.3、(﹣3,2)【分析】由题意知m+1=2,得m的值;将m代入求点P的坐标即可.【详解】解:∵点P(3m﹣6,m+1)在过点A(﹣1,2)且与x轴平行的直线上∴m+1=2解得m=1∴3m﹣6=3×1﹣6=﹣3∴点P的坐标为(﹣3,2)故答案为:(﹣3,2).【点睛】本题考查了直角坐标系中与x轴平行的直线上点坐标的关系.解题的关键在于明确与x轴平行的直线上点坐标的纵坐标相等.4、【分析】根据折叠的性质,可得 ,从而得到,再由AB':B'C=3:2,AB=6,可得,从而得到,进而得到,然后设点D到AC的距离是 ,即可求解.【详解】解:∵将△ABD沿直线AD翻折后,点B恰好落在边AC上B'点,∴ ,∴,∵AB':B'C=3:2,AB=6,∴,∴ , ∴ ,∴,设点D到AC的距离是 ,∴ ,解得: .故答案为:【点睛】本题主要考查了图形的折叠,全等三角形的性质,根据题意得到是解题的关键.5、84【分析】等量关系为:个位上的数字与十位上的数字的平方和=这个两位数﹣4,把相关数值代入求得整数解即可.【详解】设十位上的数字为x,则个位上的数字为(x﹣4).可列方程为:x2+(x﹣4)2=10x+(x﹣4)﹣4解得:x1=8,x2=1.5(舍),∴x﹣4=4,∴10x+(x﹣4)=84.答:这个两位数为84.故答案为:84【点睛】本题考查了一元二次方程的应用,根据题意列出方程是解题的关键.三、解答题1、,【分析】先根据去括号和合并同类项法则化简,再把,代入计算即可.【详解】解:,=当时,原式=.【点睛】本题考查整式的化简求值,解题的关键是掌握去括号和合并同类项法则及有理数的混合运算.2、(1)①(6,4);②(3,-2)(2)的值为【分析】(1)由题意根据点P为点M关于点N的对称平移点的定义画出图形,可得结论;(2)根据题意分两种情形:m>0,m<0,利用三角形面积公式,构建方程求解即可.(1)解:①如图1中,点关于点的对称平移点为.故答案为:.②若点为点关于点的对称平移点,则点的坐标为.故答案为:;(2)解:如图2中,当时,四边形是梯形,,,,,或(舍弃),当时,同法可得,综上所述,的值为.【点睛】本题考查坐标与图形变化-旋转,三角形的面积公式,轴对称,平移变换等知识,解题的关键是理解新定义,学会利用参数构建方程解决问题.3、(1)见解析;(2)三角形的两边之和大于第三边;(3) ,理由见解析;(4)70°【分析】(1)根据题意画出图形,即可求解;(2)根据三角形的两边之和大于第三边,即可求解;(3)利用刻度尺测量得: ,即可求解;(4)用180°减去80°,再减去30°,即可求解.【详解】解:(1)根据题意画出图形,如图所示:(2)在△AOB中,因为三角形的两边之和大于第三边,所以;(3) ,理由如下:利用刻度尺测量得: ,AC=2cm,∴;(4)根据题意得: .【点睛】本题主要考查了方位角,三角形的三边关系及其应用,中点的定义,明确题意,准确画出图形是解题的关键.4、米【分析】如图,过作于 可得再利用求解 从而可得答案.【详解】解:如图,过作于 结合题意可得:四边形是矩形, 而 所以铁塔高BC为:米【点睛】本题考查的是矩形的判定与性质,解直角三角形的应用,熟练的构建直角三角形,再利用锐角三角函数求解直角三角形的边长是解本题的关键.5、(1)(2)见解析(3)存在,【分析】(1)根据题意作出图形,进而,根据tanB =,,求得,;(2)证明,直接得证;(3)作于M,于H,于N.则,进而可得四边形AMHN为矩形,证明,求得,当时,由于点D不与点C重合,可知为等腰三角形,进而求得.(1)如图,当D运动到BC的中点时, ,,,又 tanB =,设,则(2)证明:∵∴∵,;∴∴∴ ∵ ∴(3)点D在运动过程中,存在某个位置,使得.理由:作于M,于H,于N.则∴四边形AMHN为矩形,∴,,∵,∴可设,, ∴可得∵,∴, ∴.∵,, ∴,∵, ∴∴,∴∴, ∴,当时,由于点D不与点C重合,可知为等腰三角形,∵, ∴, ∴∴点D在运动过程中,存在某个位置,使得.此时.【点睛】本题考查了等腰三角形的性质与判定,勾股定理,相似三角形的性质与判定,正切的定义,掌握相似三角形的性质与判定是解题的关键.
相关试卷
这是一份中考专题湖南省怀化市中考数学模拟专项测试 B卷(含答案详解),共33页。试卷主要包含了下列方程中,解为的方程是等内容,欢迎下载使用。
这是一份中考专题湖南省株洲市中考数学模拟专项测试 B卷(含答案及详解),共31页。试卷主要包含了如图个三角形.等内容,欢迎下载使用。
这是一份【真题汇编】2022年北京市中考数学模拟专项测试 B卷(含详解),共23页。试卷主要包含了下列说法正确的是,下列图形中,是中心对称图形的是,如图,在中,,,,分别在,下列计算错误的是,二次函数 y=ax2+bx+c等内容,欢迎下载使用。