【历年真题】:2022年河南省郑州市中考数学模拟专项测试 B卷(含答案详解)
展开
这是一份【历年真题】:2022年河南省郑州市中考数学模拟专项测试 B卷(含答案详解),共22页。试卷主要包含了到三角形三个顶点距离相等的点是,下列计算中正确的是等内容,欢迎下载使用。
2022年河南省郑州市中考数学模拟专项测试 B卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、工人常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使CM=CN,过角尺顶点C作射线OC,由此作法便可得△NOC≌△MOC,其依据是( )A.SSS B.SAS C.ASA D.AAS2、已知,则代数式的值是( )A.﹣3 B.3 C.9 D.183、在数2,-2,,中,最小的数为( )A.-2 B. C. D.24、到三角形三个顶点距离相等的点是( )A.三边垂直平分线的交点 B.三条高所在直线的交点C.三条角平分线的交点 D.三条中线的交点5、下列计算中正确的是( )A. B. C. D.6、下列对一元二次方程x2-2x-4=0根的情况的判断,正确的是( )A.有两个相等的实数根 B.有两个不相等的实数根C.没有实数根 D.无法判断7、下列各组数据中,能作为直角三角形的三边长的是( )A.,, B.4,9,11 C.6,15,17 D.7,24,258、如图,点P是▱ABCD边AD上的一点,E,F分别是BP,CP的中点,已知▱ABCD面积为16,那么△PEF的面积为( )A.8 B.6 C.4 D.29、一种药品经过两次降价,药价从每盒60元下调至48.6元,设平均每次降价的百分率为x,根据题意所列方程正确的是( )A. B. C. D.10、如图,在矩形ABCD中,AB=2,BC=4,对角线AC,BD相交于点O,OE⊥AC交BC于点E,EF⊥BD于点F,则OE+EF的值为( )A. B.2 C. D.2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知:的平分线与的垂直平分线相交于点,,,垂足分别为、,,,则________.2、近似数精确到____________位.3、将0.094932用四舍五入法取近似值精确到百分位,其结果是______.4、如图,直线a∥b,在Rt△ABC中,点C在直线a上,若∠1=56°,∠2=29°,则∠A的度数为______度.5、如图,从一块直径为2cm的圆形铁皮上剪出一圆心角为90°的扇形,则此扇形的面积为______cm2.三、解答题(5小题,每小题10分,共计50分)1、如图,在△ABC中,已知AD平分∠BAC,E是边AB上的一点,AE=AC,F是边AC上的一点,联结DE、CE、FE,当EC平分∠DEF时,猜测EF、BC的位置关系,并说明理由.(完成以下说理过程)解:EF、BC的位置关系是______.说理如下:因为AD是∠BAC的角平分线(已知)所以∠1=∠2.在△AED和△ACD中,,所以△AED≌△ACD(SAS).得__________(全等三角形的对应边相等).2、在平面直角坐标系中,对于点,,将点关于直线对称得到点,当时,将点向上平移个单位,当时,将点向下平移个单位,得到点,我们称点为点关于点的对称平移点.例如,如图已知点,,点关于点的对称平移点为.(1)已知点,,①点关于点的对称平移点为________(直接写出答案).②若点为点关于点的对称平移点,则点的坐标为________.(直接写出答案)(2)已知点在第一、三象限的角平分线上,点的横坐标为,点的坐标为.点为点关于点的对称平移点,若以,,为顶点的三角形围成的面积为1,求的值.3、平面上有三个点A,B,O.点A在点O的北偏东方向上,,点B在点O的南偏东30°方向上,,连接AB,点C为线段AB的中点,连接OC.(1)依题意补全图形(借助量角器、刻度尺画图);(2)写出的依据:(3)比较线段OC与AC的长短并说明理由:(4)直接写出∠AOB的度数.4、如图,如图,一楼房AB后有一假山,CD的坡度为i=1:2,山坡坡面上E点处有一休息亭,测得假山脚与楼房水平距离BC=24米,与亭子距离CE=8米,小丽从楼房房顶测得E的俯角为45°.(1)求点E到水平地面的距离;(2)求楼房AB的高.5、用适当的方法解下列方程:(1);(2). -参考答案-一、单选题1、A【分析】利用边边边,可得△NOC≌△MOC,即可求解.【详解】解:∵OM=ON,CM=CN, ,∴△NOC≌△MOC(SSS).故选:A【点睛】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法——边角边、角边角、角角边、边边边是解题的关键.2、C【分析】由已知得到,再将变形,整体代入计算可得.【详解】解:∵,∴,∴===9故选:C.【点睛】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.3、A【分析】根据正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小比较即可.【详解】解:∵,,∴-2<<<2,故选A.【点睛】本题考查了有理数的大小比较,熟练掌握有理数大小比较的方法是解答本题的关键.4、A【分析】根据线段垂直平分线上的点到两端点的距离相等解答.【详解】解:∵线段垂直平分线上的点到两端点的距离相等,∴到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.故选:A.【点睛】本题考查的是线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.5、B【分析】根据绝对值,合并同类项和乘方法则分别计算即可.【详解】解:A、,故选项错误;B、,故选项正确;C、不能合并计算,故选项错误;D、,故选项错误;故选B.【点睛】本题考查了绝对值,合并同类项和乘方,掌握各自的定义和运算法则是必要前提.6、B【分析】根据方程的系数结合根的判别式,可得出Δ=20>0,进而可得出方程x2-2x-4=0有两个不相等的实数根.【详解】解:∵Δ=(-2)2-4×1×(-4)= 20>0,∴方程x2-2x-4=0有两个不相等的实数根.故选:B.【点睛】本题考查了根的判别式,牢记“当Δ>0时,方程有两个不相等的实数根”是解题的关键.7、D【分析】由题意直接依据勾股定理的逆定理逐项进行判断即可.【详解】解:A.∵,∴,,为边不能组成直角三角形,故本选项不符合题意;B.∵42+92≠112,∴以4,9,11为边不能组成直角三角形,故本选项不符合题意;C.∵62+152≠172,∴以6,15,17为边不能组成直角三角形,故本选项不符合题意;D.∵72+242=252,∴以7,24,25为边能组成直角三角形,故本选项符合题意;故选:D.【点睛】本题考查勾股定理的逆定理,能熟记勾股定理的逆定理是解答此题的关键,注意掌握如果一个三角形的两边a、b的平方和等于第三边c的平方,那么这个三角形是直角三角形.8、D【分析】根据平行线间的距离处处相等,得到,根据EF是△PBC的中位线,得到△PEF∽△PBC,EF=,得到计算即可.【详解】∵点P是▱ABCD边AD上的一点,且 ▱ABCD面积为16,∴;∵E,F分别是BP,CP的中点, ∴EF∥BC,EF=,∴△PEF∽△PBC,∴,∴,故选D.【点睛】本题考查了平行四边形的性质,三角形中位线定理,三角形相似的判定和性质,熟练掌握中位线定理,灵活运用三角形相似的性质是解题的关键.9、B【分析】根据等量关系:原价×(1-x)2=现价列方程即可.【详解】解:根据题意,得:,故答案为:B.【点睛】本题考查一元二次方程的应用,找准等量关系列出方程是解答的关键.10、A【分析】依据矩形的性质即可得到的面积为2,再根据,即可得到的值.【详解】解:,,矩形的面积为8,,,对角线,交于点,的面积为2,,,,即,,,,故选:A.【点睛】本题主要考查了矩形的性质,解题的关键是掌握矩形的四个角都是直角,矩形的对角线相等且互相平分.二、填空题1、【分析】连接,,证明,,根据,即可求得【详解】解:连接,,是的平分线,,,,,,在和中,,,,是的垂直平分线,,在和中, ,,,,,,.故答案为:.【点睛】本题考查了角平分线的性质,垂直平分线的性质,三角形全等的性质与判定,掌握以上性质定理是解题的关键.2、百【分析】一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.【详解】解:∵104是1万,6位万位,0为千位,5为百位,∴近似数6.05×104精确到百位;故答案为百.【点睛】此题考查近似数与有效数字,解题关键在于掌握从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字.最后一位所在的位置就是精确度.3、0.09【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.094932用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为:0.09.【点睛】本题考查了近似数和有效数字,解题的关键是掌握近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.4、27【分析】如图,∠3=∠1,由∠3=∠2+∠A计算求解即可.【详解】解:如图∵a∥b,∠1=56°∴∠3=∠1=56°∵∠3=∠2+∠A,∠2=29°∴∠A=∠3﹣∠2=56°﹣29°=27°故答案为:27.【点睛】本题考查了平行线性质中的同位角,三角形的外角等知识.解题的关键在于正确的表示角的数量关系.5、【分析】连接AC,根据圆周角定理得出AC为圆的直径,解直角三角形求出AB,根据扇形面积公式进行求解即可.【详解】解:如图,连接AC,∵从一块直径为2cm的圆形铁皮上剪出一个圆心角为90°的扇形,即∠ABC=90°,∴AC为直径,即AC=2cm,AB=BC(扇形的半径相等),∵在中,,∴AB=BC=,∴阴影部分的面积是 (cm2).故答案为:.【点睛】本题考查了圆周角定理和扇形的面积计算,熟记扇形的面积公式是解题的关键.三、解答题1、EF∥BC,DE=DC.【分析】先利用△AED≌△ACD得到∠3=∠4,利用角的平分线,转化为一对相等的内错角,继而判定直线的平行.【详解】解:EF、BC的位置关系是EF∥BC.理由如下:如图,∵AD是∠BAC的角平分线(已知)∴∠1=∠2.在△AED和△ACD中,,∴△AED≌△ACD(SAS).∴DE=DC(全等三角形的对应边相等),∴∠3=∠4.∵EC平分∠DEF(已知),∴∠3=∠5.∴∠4=∠5.所以EF∥BC(内错角相等,两直线平行).故答案为:EF∥BC,∠1=∠2,AD=AD,DE=DC.【点睛】本题考查了三角形的全等和性质,角的平分线即从角的顶点出发的射线把这个角分成相等的两个角,等腰三角形的性质,平行线的判定,熟练掌握灯光要三角形的性质,平行线的判定是解题的关键.2、(1)①(6,4);②(3,-2)(2)的值为【分析】(1)由题意根据点P为点M关于点N的对称平移点的定义画出图形,可得结论;(2)根据题意分两种情形:m>0,m<0,利用三角形面积公式,构建方程求解即可.(1)解:①如图1中,点关于点的对称平移点为.故答案为:.②若点为点关于点的对称平移点,则点的坐标为.故答案为:;(2)解:如图2中,当时,四边形是梯形,,,,,或(舍弃),当时,同法可得,综上所述,的值为.【点睛】本题考查坐标与图形变化-旋转,三角形的面积公式,轴对称,平移变换等知识,解题的关键是理解新定义,学会利用参数构建方程解决问题.3、(1)见解析;(2)三角形的两边之和大于第三边;(3) ,理由见解析;(4)70°【分析】(1)根据题意画出图形,即可求解;(2)根据三角形的两边之和大于第三边,即可求解;(3)利用刻度尺测量得: ,即可求解;(4)用180°减去80°,再减去30°,即可求解.【详解】解:(1)根据题意画出图形,如图所示:(2)在△AOB中,因为三角形的两边之和大于第三边,所以;(3) ,理由如下:利用刻度尺测量得: ,AC=2cm,∴;(4)根据题意得: .【点睛】本题主要考查了方位角,三角形的三边关系及其应用,中点的定义,明确题意,准确画出图形是解题的关键.4、(1)8米(2)48米【分析】(1)过点E作EF⊥BC的延长线于F,根据CD的坡度为i=1:2,CE=8米,可得EF=8米,CF=16米;(2)过E作EH⊥AB于点H,根据锐角三角函数即可求出AH,进而可得AB.(1)解:过点E作的延长线于F.在中,∵CD的坡度,∴∵,∴,米,∴点E到水平地面的距离为8米.(2)解:作于点H,∵,,∴四边形BFEH为矩形;∴,,∵,,∴,在中,∵,∴,∴.∴楼房AB的高为48米.【点睛】本题考查了解直角三角形的应用−仰角俯角问题,坡度坡角问题,解决本题的关键是掌握仰角俯角定义.5、(1),(2),【分析】(1)用配方法解即可;(2)用因式分解法即可.(1)方程配方得:开平方得:解得:,(2)原方程可化为:即∴或解得:,【点睛】本题考查了解一元二次方程的配方法和因式分解法,根据方程的特点采用适当的方法可使解方程简便.
相关试卷
这是一份【历年真题】最新中考数学模拟专项测试 B卷(含答案详解),共19页。试卷主要包含了在中,,,那么的值等于,下列说法中正确的个数是等内容,欢迎下载使用。
这是一份【历年真题】2022年石家庄桥西区中考数学模拟专项测试 B卷(含答案及详解),共28页。试卷主要包含了化简的结果是,在,,, ,中,负数的个数有.,有下列四种说法,下列变形中,正确的是等内容,欢迎下载使用。
这是一份【历年真题】中考数学模拟专项测试 B卷(含答案及详解),共20页。试卷主要包含了不等式+1<的负整数解有,下列计算,下列变形中,正确的是等内容,欢迎下载使用。