


【高频真题解析】2022年重庆市渝中区中考数学模拟测评 卷(Ⅰ)(含详解)
展开
这是一份【高频真题解析】2022年重庆市渝中区中考数学模拟测评 卷(Ⅰ)(含详解),共24页。试卷主要包含了如图,点在直线上,平分,,,则等内容,欢迎下载使用。
2022年重庆市渝中区中考数学模拟测评 卷(Ⅰ) 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一圆锥高为4cm,底面半径为3cm,则该圆锥的侧面积为( )A. B. C. D.2、的值( ).A. B.2022 C. D.-20223、在一次“寻宝”游戏中,寻宝人已经找到两个标志点和,并且知道藏宝地点的坐标是,则藏宝处应为图中的( )A.点 B.点 C.点 D.点4、如图,在梯形中,ADBC,过对角线交点的直线与两底分别交于点,下列结论中,错误的是( )A. B. C. D.5、筹算是中国古代计算方法之一,宋代数学家用白色筹码代表正数,用黑色筹码代表负数,图中算式一表示的是,按照这种算法,算式二被盖住的部分是( )A. B. C. D. 6、已知正五边形的边长为1,则该正五边形的对角线长度为( ).A. B. C. D.7、如图,与位似,点O是位似中心,若,,则( )A.9 B.12 C.16 D.368、如图,点在直线上,平分,,,则( )A.10° B.20° C.30° D.40°9、平面直角坐标系中,已知点,,其中,则下列函数的图象可能同时经过P,Q两点的是( ).A. B.C. D.10、若关于的方程有两个实数根,则的取值范围是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果点A(﹣1,3)、B(5,n)在同一个正比例函数的图像上,那么n=___.2、方程(x﹣3)(x+4)=﹣10的解为 ___.3、如图,,,有下列结论:①;②;③;④.其中正确的有______.(只填序号)4、如图,若用我们数学课本上采用的科学计算器进行计算,其按键顺序为:则输出结果应为______.5、计算:=_____.三、解答题(5小题,每小题10分,共计50分)1、如图,有一块直角三角形纸片,两直角边cm,cm,现将直角边AC沿直线AD对折,使它落在斜边AB上,且与AE重合,求CD的长.2、画出下面由11个小正方体搭成的几何体从不同角度看得到的图形.(1)请画出从正面看、从左面看、从上面看的平面图形.(2)小立方体的棱长为3cm,现要给该几何体表面涂色(不含底面),求涂上颜色部分的总面积.(3)如果在这个组合体中,再添加一个相同的正方体组成一个新组合体,从正面、左面看这个新组合体时,看到的图形与原来相同,可以有______种添加方法,画出添加正方体后,从上面看这个组合体时看到的一种图形.3、在平面直角坐标系中,对于点和,给出如下定义:若,则称点为点的“可控变点”例如:点的“可控变点”为点,点的“可控变点”为点.(1)点的“可控变点”坐标为 ;(2)若点在函数的图象上,其“可控变点” 的纵坐标是7,求“可控变点” 的横坐标:(3)若点在函数的图象上,其“可控变点” 的纵坐标的取值范围是,求的值.4、下面是小颖同学解二元一次方程组的过程,请认真阅读并完成相应的任务.解方程组:.解:①,得③,第一步,②③,得,第二步,.第三步,将代入①,得.第四步,所以,原方程组的解为.第五步.填空:(1)这种求解二元一次方程组的方法叫做______.、代入消元法、加减消元法(2)第______步开始出现错误,具体错误是______;(3)直接写出该方程组的正确解:______.5、如图,已知△ABC.(1)请用尺规在图中补充完整以下作图,保留作图痕迹:作∠ACB的角平分线,交AB于点D;作线段CD的垂直平分线,分别交AC于点E,交BC于点F;连接DE,DF;(2)求证:四边形CEDF是菱形. -参考答案-一、单选题1、C【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,扇形的面积公式求解.【详解】解: ∵一圆锥高为4cm,底面半径为3cm,∴圆锥母线=,∴圆锥的侧面积=(cm2).故选C.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.2、B【分析】数轴上表示数的点与原点的距离是数的绝对值,根据绝对值的含义可得答案.【详解】解:故选B【点睛】本题考查的是绝对值的含义,掌握“求解一个数的绝对值”是解本题的关键.3、B【分析】结合题意,根据点的坐标的性质,推导得出原点的位置,再根据坐标的性质分析,即可得到答案.【详解】∵点和,∴坐标原点的位置如下图:∵藏宝地点的坐标是∴藏宝处应为图中的:点故选:B.【点睛】本题考查了坐标与图形,解题的关键是熟练掌握坐标的性质,从而完成求解.4、B【分析】根据ADBC,可得△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,再利用相似三角形的性质逐项判断即可求解.【详解】解:∵ADBC,∴△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,∴,故A正确,不符合题意;∵ADBC,∴△DOE∽△BOF,∴,∴,∴,故B错误,符合题意;∵ADBC,∴△AOD∽△COB,∴, ∴,故C正确,不符合题意;∴ ,∴,故D正确,不符合题意;故选:B【点睛】本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键.5、A【分析】参考算式一可得算式二表示的是,由此即可得.【详解】解:由题意可知,图中算式二表示的是,所以算式二为 所以算式二被盖住的部分是选项A,故选:A.【点睛】本题考查了有理数的加法,理解筹算的运算法则是解题关键.6、C【分析】如图,五边形ABCDE为正五边形, 证明 再证明可得:设AF=x,则AC=1+x,再解方程即可.【详解】解:如图,五边形ABCDE为正五边形, ∴五边形的每个内角均为108°, ∴∠BAG=∠ABF=∠ACB=∠CBD= 36°, ∴∠BGF=∠BFG=72°, 设AF=x,则AC=1+x, 解得:,经检验:不符合题意,舍去, 故选C【点睛】本题考查的是正多边形的性质,等腰三角形的判定与性质,相似三角形的判定与性质,证明是解本题的关键.7、D【分析】根据位似变换的性质得到,得到,求出,根据相似三角形的面积比等于相似比的平方计算即可.【详解】解:与位似,,,,,,,故选:D.【点睛】本题考查的是位似变换的概念和性质、相似三角形的性质,解题的关键是掌握相似三角形的面积比等于相似比的平方.8、A【分析】设∠BOD=x,分别表示出∠COD,∠COE,根据∠EOD=50°得出方程,解之即可.【详解】解:设∠BOD=x,∵OD平分∠COB,∴∠BOD=∠COD=x,∴∠AOC=180°-2x,∵∠AOE=3∠EOC,∴∠EOC=∠AOC==,∵∠EOD=50°,∴,解得:x=10,故选A.【点睛】本题考查角平分线的意义,通过图形表示出各个角,是正确计算的前提.9、B【分析】先判断再结合一次函数,二次函数的增减性逐一判断即可.【详解】解: 同理: 当时,随的增大而减小,由可得随的增大而增大,故A不符合题意;的对称轴为: 图象开口向下,当时,随的增大而减小,故B符合题意;由可得随的增大而增大,故C不符合题意;的对称轴为: 图象开口向上,时,随的增大而增大,故D不符合题意;故选B【点睛】本题考查的是一次函数与二次函数的图象与性质,掌握“一次函数与二次函数的增减性”是解本题的关键.10、B【分析】令该一元二次方程的判根公式,计算求解不等式即可.【详解】解:∵∴∴解得故选B.【点睛】本题考查了一元二次方程的根与解一元一次不等式.解题的关键在于灵活运用判根公式.二、填空题1、【分析】设过的正比例函数为: 求解的值及函数解析式,再把代入函数解析式即可.【详解】解:设过的正比例函数为: 解得: 所以正比例函数为: 当时, 故答案为:【点睛】本题考查的是利用待定系数法求解正比例函数的解析式,正比例函数的性质,熟练的利用待定系数法列方程是解本题的关键.2、【分析】先把方程化为一元二次方程的一般形式,再利用因式分解法解方程即可.【详解】解:(x﹣3)(x+4)=﹣10 或 解得: 故答案为:【点睛】本题考查的是利用因式分解法解一元二次方程,掌握“利用十字乘法把方程的左边分解因式化为两个一次方程”是解本题的关键.3、①②④【分析】由条件可先证明∠B=∠C,再证明AE∥DF,结合平行线的性质及对顶角相等可得到∠AMC=∠BND,可得出答案.【详解】解:,,,又,,,,又,,故①②④正确,由条件不能得出,故③不一定正确;故答案为:①②④.【点睛】本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键.4、30【分析】根据科学计算器的使用计算.【详解】解:依题意得:[3×(﹣2)3-1]÷(-)=30,故答案为30.【点睛】利用科学计算器的使用规则把有理数混合运算,再计算.5、16【分析】依题意,按照幂的定义及形式,对底数进行转换,利用其性质计算即可;【详解】由题知,,∴ ;故填:;【点睛】本题主要考查幂的定义性质及其底数的灵活转换,关键在熟练其定义;三、解答题1、CD长为3cm【分析】在中,由勾股定理得,由折叠对称可知,cm,,,设,则,在中,由勾股定理得,计算求解即可.【详解】解:∵cm,cm∴在中, 由折叠对称可知,cm,∴cm设,则∴在中,由勾股定理得即解得∴CD的长为3cm.【点睛】本题考查了轴对称,勾股定理等知识.解题的关键在于找出线段的数量关系.2、(1)见解析;(2)315cm2 ;(3)2【分析】(1)根据三视图的画法,画出这个简单组合体的三视图即可;(2)分别求出最上层,中间层和最下面一层需要涂色的面,即可求解;(3)根据再添加一个相同的正方体组成一个新组合体,从正面、左面看这个新组合体时,看到的图形与原来相同,进行求解即可.(1)解:如图所示,即为所求:(2)解:由题意可知,几何体的最上层一共有5个面需要涂色,中间一层一共有12个面需要涂色,最小面一层一共有18个面需要涂色,∴一共用12+18+5=35个面需要涂色,∴涂上颜色部分的总面积(3)解:如图所示,一共有2种添加方法.【点睛】本题主要考查了画简单几何体的三视图,简单组合体的表面积等等,解题的关键在于能够熟练掌握相关知识.3、(1)(2)“可控变点” 的横坐标为3或(3)【分析】(1)根据可控变点的定义,可得答案;(2)根据可控变点的定义,可得函数解析式,根据自变量与函数值得对应关系,可得答案;(3)根据可控变点的定义,可得函数解析式,根据自变量与函数值得对应关系,结合图象可得答案.(1),,即点的“可控变点”坐标为;(2)由题意,得的图象上的点的“可控变点”必在函数的图象上,如图1, “可控变点” 的纵坐标的是7,当时,解得,当时,解得,故答案为:3或;(3)由题意,得y=-x2+16的图象上的点P的“可控变点”必在函数y′= 的图象上,如图2,当x=-5时,x2-16=9,∴-16<y′=x2-16≤9(x<0),∴y′=-16在y′=-x2+16(x≥0)上,∴-16=-x2+16,∴x=4,∴实数a的值为4.【点睛】本题考查了新定义,二次函数的图象与性质,利用可控变点的定义得出函数解析式是解题关键,又利用了自变量与函数值的对应关系.4、(1)B(2)二;应该等于(3)【分析】(1)②−③消去了x,得到了关于y的一元一次方程,所以这是加减消元法;(2)第二步开始出现错误,具体错误是−3y−(−4y)应该等于y;(3)解方程组即可.(1)解:②③消去了,得到了关于的一元一次方程,故答案为:;(2)解:第二步开始出现错误,具体错误是应该等于,故答案为:二;应该等于;(3)解:②③得,将代入①,得:,原方程组的解为.故答案为:.【点睛】本题考查了二元一次方程组的解法,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.5、(1)见解析(2)见解析【分析】(1)根据要求的步骤作角平分线和垂直平分线即可,并连接DE,DF;(2)根据垂直平分线的性质可得,进而证明即可得,进而根据四边相等的四边形是菱形,即可证明四边形是菱形.(1)如图所示,即为所求,(2)证明:如图,设交于点垂直平分在与中四边形是菱形【点睛】本题考查了作角平分线和垂直平分线,菱形的判定,掌握基本作图和菱形的判定定理是解题的关键.
相关试卷
这是一份【高频真题解析】河北省中考数学模拟测评 卷(Ⅰ)(含详解),共30页。试卷主要包含了下列图标中,轴对称图形的是,已知,则的补角等于等内容,欢迎下载使用。
这是一份【高频真题解析】2022年福建省莆田中考数学模拟真题测评 A卷(含详解),共21页。
这是一份【高频真题解析】中考数学模拟测评 卷(Ⅰ)(含答案及详解),共26页。试卷主要包含了使分式有意义的x的取值范围是等内容,欢迎下载使用。
