![【历年真题】:2022年四川省遂宁市中考数学模拟真题测评 A卷(含答案详解)第1页](http://img-preview.51jiaoxi.com/2/3/12673539/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【历年真题】:2022年四川省遂宁市中考数学模拟真题测评 A卷(含答案详解)第2页](http://img-preview.51jiaoxi.com/2/3/12673539/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【历年真题】:2022年四川省遂宁市中考数学模拟真题测评 A卷(含答案详解)第3页](http://img-preview.51jiaoxi.com/2/3/12673539/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
【历年真题】:2022年四川省遂宁市中考数学模拟真题测评 A卷(含答案详解)
展开
这是一份【历年真题】:2022年四川省遂宁市中考数学模拟真题测评 A卷(含答案详解),共25页。试卷主要包含了下列计算正确的是,下列各组图形中一定是相似形的是,下列二次根式的运算正确的是,若单项式与是同类项,则的值是等内容,欢迎下载使用。
2022年四川省遂宁市中考数学模拟真题测评 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列关于整式的说法错误的是( )A.单项式的系数是-1 B.单项式的次数是3C.多项式是二次三项式 D.单项式与ba是同类项2、一个不透明的盒子里装有a个除颜色外完全相同的球,其中有6个白球,每次将球充分搅匀后,任意摸出1个球记下颜色然后再放回盒子里,通过如此大量重复试验,发现摸到白球的频率稳定在0.4左右,则a的值约为( )A.10 B.12 C.15 D.183、在数-12,π,-3.4,0,+3,中,属于非负整数的个数是( )A.4 B.3 C.2 D.14、一次函数y1=kx+b与y2=mx+n的部分自变量和对应函数值如表:x…﹣2﹣1012…y1…12345…x…﹣2﹣1012…y2…52﹣1﹣4﹣7…则关于x的不等式kx+b>mx+n的解集是( )A.x>0 B.x<0 C.x<﹣1 D.x>﹣15、下列计算正确的是( )A. B.C. D.6、下列各组图形中一定是相似形的是( )A.两个等腰梯形 B.两个矩形 C.两个直角三角形 D.两个等边三角形7、下列二次根式的运算正确的是( )A. B.C. D.8、若单项式与是同类项,则的值是( )A.6 B.8 C.9 D.129、任何一个正整数n都可以进行这样的分解:n=p×q(p、q是正整数.且p≤q),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:S(n)=,例如18可以分解成1×18,2×9或3×6,则S(18)==,例如35可以分解成1×35,5×7,则S(35)=,则S(128)的值是( )A. B. C. D.10、如图,各图形由大小相同的黑点组成,图1中有2个点,图2中有7个点,图3中有14个点,……,按此规律,第6个图中黑点的个数是( )A.47 B.62 C.79 D.98第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、多项式2a2b-abc的次数是______.2、如图,C是线段AB延长线上一点,D为线段BC上一点,且,E为线段AC上一点,,若,则_________.3、已知关于x,y的二元一次方程组的解x,y互为相反数,则a的值为______.4、如图,AC=12cm,AB=5cm,点D是BC的中点,那么CD=________________cm.5、在同一平面上,外有一点P到圆上的最大距离是8cm,最小距离为2cm,则的半径为______cm.三、解答题(5小题,每小题10分,共计50分)1、在中,,,点E在射线CB上运动.连接AE,将线段AE绕点E顺时针旋转90°得到EF,连接CF.(1)如图1,点E在点B的左侧运动.①当,时,则___________°;②猜想线段CA,CF与CE之间的数量关系为____________.(2)如图2,点E在线段CB上运动时,第(1)问中线段CA,CF与CE之间的数量关系是否仍然成立?如果成立,请说明理由;如果不成立,请求出它们之间新的数量关系.2、已知过点的抛物线与坐标轴交于点A,C如图所示,连结AC,BC,AB,第一象限内有一动点M在抛物线上运动,过点M作交y轴于点P,当点P在点A上方,且与相似时,点M的坐标为______.3、解方程:x2﹣4x﹣9996=0.4、某商店销售一种商品,经市场调查发现:在实际销售中,售价x为整数,且该商品的月销售量y(件)是售价x(元/件)的一次函数,其售价x(元/件)、月销售量y(件)、月销售利润w(元)的部分对应值如表:售价x(元/件)4045月销售量y(件)300250月销售利润w(元)30003750注:月销售利润=月销售量×(售价-进价)(1)求y关于x的函数表达式;(2)当该商品的售价是多少元时,月销售利润最大?并求出最大利润;(3)现公司决定每销售1件商品就捐赠m元利润()给“精准扶贫”对象,要求:在售价不超过52元时,每天扣除捐赠后的日销售利润随售价x的增大而增大,求m的取值范围.5、如图1,在△ABC中,AB = AC =10,tanB =,点D为BC 边上的动点(点D不与点B ,C重合).以D为顶点作∠ADE =∠B ,射线DE交AC边于点E,过点A作AF⊥AD交射线DE于点F,连接CF.(1)当D运动到BC的中点时,直接写出AF的长;(2)求证:10CE=BD∙CD;(3)点D在运动过程中,是否存在某个位置,使得DF=CF?若存在,求出此时BD的长;若不存在,请说明理由. -参考答案-一、单选题1、C【分析】根据单项式系数和次数的定义,多项式的定义,同类项的定义逐一判断即可.【详解】解:A、单项式的系数是-1,说法正确,不符合题意;B、单项式的次数是3,说法正确,不符合题意;C、多项式是三次二项式,说法错误,符合题意;D、单项式与ba是同类项,说法正确,不符合题意;故选C.【点睛】本题主要考查了单项式的次数、系数的定义,多项式的定义,同类项的定义,解题的关键在于能够熟知相关定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数;几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数;同类项的定义:如果两个单项式所含的字母相同,相同字母的指数也相同,那么这两个单项式就叫做同类项.2、C【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从摸到白球的频率稳定在0.4左右得到比例关系,列出方程求解即可.【详解】解:由题意可得,,解得,a=15.经检验,a=15是原方程的解故选:C.【点睛】本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据白球的频率得到相应的等量关系.3、C【分析】非负整数即指0或正整数,据此进行分析即可.【详解】解:在数-12,π,-3.4,0,+3,中,属于非负整数的数是:0,+3,共2个,故选:C.【点睛】本题主要考查了有理数.明确非负整数指的是正整数和0是解答本题的关键.4、D【分析】根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断.【详解】解:根据表可得y1=kx+b中y随x的增大而增大;y2=mx+n中y随x的增大而减小,且两个函数的交点坐标是(﹣1,2).则当x>﹣1时,kx+b>mx+n.故选:D.【点睛】本题考查了一次函数与一元一次不等式,一次函数的性质,正确确定增减性以及交点坐标是关键.5、D【分析】根据合并同类项法则合并同类项,进行计算即可.【详解】A.,故选项A错误;B. 不是同类项,不能合并,故选项B错误;C.,故选项C错误;D.,故选项D正确.故选D.【点睛】本题考查了同类项和合并同类项,掌握同类项定义,所含字母相同,相同字母的指数也相同的项是同类项,合并同类项法则只把同类项的系数相加减字母和字母的指数不变是解题的关键.6、D【分析】根据相似形的形状相同、大小不同的特点,再结合等腰梯形、矩形,直角三角形、等边三角形的性质与特点逐项排查即可.【详解】解:A、两个等腰梯形的形状不一定相同,则不一定相似,故本选项错误;B、两个矩形的形状不一定相同,则不一定相似,故本选项错误;C、两个直角三角形的形状不一定相同,则不一定相似,故本选项错误;D、两个等边三角形的大小不一定相同,但形状一定相同,则一定相似,故本选项正确.故选D.【点睛】本题主要考查了相似图形的定义,理解相似形的形状相同、大小不同的特点成为解答本题的关键.7、B【分析】根据二次根式的性质及运算逐项进行判断即可.【详解】A、,故运算错误;B、,故运算正确;C、,故运算错误;D、,故运算错误.故选:B【点睛】本题考查了二次根式的性质、二次根式的运算,掌握二次根式的性质及运算法则是关键.8、C【分析】根据同类项的定义可得,代入即可求出mn的值.【详解】解:∵与是同类项,∴,解得:m=3,∴.故选:C.【点睛】此题考查了同类项的定义,解题的关键是熟练掌握同类项的定义.同类项:如果两个单项式,他们所含的字母相同,并且相同字母的指数也相同,那么就称这两个单项式为同类项.9、A【分析】由128=1×128=2×64=4×32=8×16结合最佳分解的定义即可知F(128)=.【详解】解:∵128=1×128=2×64=4×32=8×16,∴F(128)=,故选:A.【点睛】本题主要考查有理数的混合运算.理解题意掌握最佳分解的定义是解题的关键.10、A【分析】根据题意得:第1个图中黑点的个数是 ,第2个图中黑点的个数是 ,第3个图中黑点的个数是,第4个图中黑点的个数是 ,……,由此发现,第 个图中黑点的个数是 ,即可求解.【详解】解:根据题意得:第1个图中黑点的个数是 ,第2个图中黑点的个数是 ,第3个图中黑点的个数是,第4个图中黑点的个数是 ,……,由此发现,第 个图中黑点的个数是 ,∴第6个图中黑点的个数是 .故选:A【点睛】本题主要考查了图形类规律题,明确题意,准确得到规律是解题的关键.二、填空题1、3【分析】利用几个单项式的和叫做多项式,每个单项式叫做多项式的项,多项式中次数最高的项的次数叫做多项式的次数,据此求解即可.【详解】解:多项式2a2b-abc的次数是3.故答案为:3.【点睛】本题主要考查了多项式,正确把握多项式的项数和次数确定方法是解题关键.2、3【分析】设BD=a,AE=b,则CD=2a,CE=2b,根据AB=AE+BE=AE+DE-BD代入计算即可.【详解】设BD=a,AE=b,∵,,∴CD=2a,CE=2b,∴DE=CE-CD=2b-2a=2即b-a=1,∴AB=AE+BE=AE+DE-BD=2+b-a=2+1=3,故答案为:3.【点睛】本题考查了线段的和与差,正确用线段的和差表示线段是解题的关键.3、-3【分析】两个方程相加得出3x+3y=3a+9,根据已知条件x,y互为相反数知x+y=0,得出关于a的方程,解方程即可.【详解】解:两个方程相加得:3x+3y=3a+9,∵x、y互为相反数,∴x+y=0,∴3x+3y=0,∴3a+9=0,解得:a=-3,故答案为:-3.【点睛】本题考查了二元一次方程组的解、互为相反数的性质;根据题意得出关于a的方程是解决问题的关键.4、【分析】首先根据线段的和差求出BC的长,再利用线段的中点可得CD.【详解】∵AC=12cm,AB=5cm,∴BC=AC﹣AB=7cm,∵点D是BC的中点,∴CD=BC=cm.故答案为:.【点睛】本题考查线段的和差,掌握线段中点的定义是解题关键.5、5或3【分析】分点P在圆内或圆外进行讨论.【详解】解:①当点P在圆内时,⊙O的直径长为8+2=10(cm),半径为5cm;②当点P在圆外时,⊙O的直径长为8-2=6(cm),半径为3cm;综上所述:⊙O的半径长为 5cm或3cm.故答案为:5或3.【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.三、解答题1、(1)①;②(2)不成立,【分析】(1)①由直角三角形的性质可得出答案;②过点E作ME⊥EC交CA的延长线于M,由旋转的性质得出AE=EF,∠AEF=90°,得出∠AEM=∠CEF,证明△FEC≌△AEM(SAS),由全等三角形的性质得出CF=AM,由等腰直角三角形的性质可得出结论;(2)过点F作FH⊥BC交BC的延长线于点H.证明△ABE≌△EHF(AAS),由全等三角形的性质得出FH=BE,EH=AB=BC,由等腰直角三角形的性质可得出结论;(1)①∵,,,∴,∵sin∠EAB=∴,故答案为:30°;②.如图1,过点E作交CA的延长线于M,∵,,∴,∴,∴,∴,∵将线段AE绕点E顺时针旋转90°得到EF,∴,,∴,在△FEC和△AEM中,∴,∴,∴,∵为等腰直角三角形,∴,∴;故答案为:;(2)不成立.如图2,过点F作交BC的延长线于点H.∴,,∵,∴,在△FEC和△AEM中,∴,∴,,∴,∴为等腰直角三角形,∴.又∵,即.【点睛】本题考查了旋转的性质,解直角三角形,等腰直角三角形的判定与性质,全等三角形的判定与性质,三角形的面积,熟练掌握旋转的性质是解题的关键.2、或【分析】运用待定系数法求出函数关系式,求出点A,C的坐标,得出AC=,BC=,AB=,判断为直角三角形,且, 过点M作MG⊥y轴于G,则∠MGA=90°,设点M的横坐标为x,则MG=x,求出含x的代数式的点M的坐标,再代入二次函数解析式即可.【详解】把点B (4,1)代入,得:∴ 抛物线的解析式为令x=0,得y=3,∴A(0,3)令y=0,则解得, ∴C(3,0)∴AC=∵B(4,1)∴BC=,AB= ∴ ∴为直角三角形,且,过点M作MG⊥y轴于G,则∠MGA=90°,设点M的横坐标为x,由M在y轴右侧可得x>0,则MG=x,∵PM⊥MA,∠ACB=90°,∴∠AMP=∠ACB=90°,①如图,当∠MAP=∠CBA时,则△MAP∽△CBA,∴ 同理可得, ∴ ∴AG=MG=x,则M(x,3+x),把M(x,3+x)代入y=x2-x+3,得x2-x+3=3+x,解得,x1=0(舍去),x2=,∴3+x=3+ ∴M(,);②如图,当∠MAP=∠CAB时,则△MAP∽△CAB,∴同理可得,AG=3MG=3x,则P(x,3+3x),把P(x,3+3x)代入y=x2-x+3,得x2-x+3=3+3x,解得,x1=0(舍去),x2=11,∴M(11,36),综上,点M的坐标为(11,36)或(,)【点睛】本题考查了待定系数法求解析式,相似三角形的判定与性质等等知识,解题关键是注意分类讨论思想在解题过程中的运用.3、,【分析】运用因式分解法求解方程即可.【详解】解:x2﹣4x﹣9996=0 ∴,【点睛】本题考查了解一元二次方程-因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).4、(1)y=-10x+700(2)当该商品的售价是50元时,月销售利润最大,最大利润是4000元(3)【分析】(1)依题意设y=kx+b,用待定系数法得到结论;(2)该商品进价是40-3000÷300=30,月销售利润为w元,列出函数解析式,根据二次函数的性质求解;(3)设利润为w′元,列出函数解析式,根据二次函数的性质求解.(1)解:设y=kx+b(k,b为常数,k≠0),根据题意得:,解得:,∴y=-10x+700;(2)解:当该商品的进价是40-3000÷300=30元,设当该商品的售价是x元/件时,月销售利润为w元,根据题意得:w=y(x-30)=(x-30)(-10x+700)=-10x2+1000 x-21000=-10(x-50)2+4000,∴当x=50时w有最大值,最大值为4000答:当该商品的售价是50元/件时,月销售利润最大,最大利润是4000元;(3)解:设利润为w′元,由题意得,w′=y(x-30-m)=(x-30-m)(-10x+700)=-10x2+1000 x+10mx -21000-700m,∴对称轴是直线x=,∵-10<0,∴抛物线开口向下,∵在售价不超过52元时,每天扣除捐赠后的日销售利润随售价x的增大而增大,∴,解得m≥4,∵,∴.【点睛】本题考查了一次函数的应用,以及二次函数的应用,熟练掌握二次函数的性质是解答本题的关键.5、(1)(2)见解析(3)存在,【分析】(1)根据题意作出图形,进而,根据tanB =,,求得,;(2)证明,直接得证;(3)作于M,于H,于N.则,进而可得四边形AMHN为矩形,证明,求得,当时,由于点D不与点C重合,可知为等腰三角形,进而求得.(1)如图,当D运动到BC的中点时, ,,,又 tanB =,设,则(2)证明:∵∴∵,;∴∴∴ ∵ ∴(3)点D在运动过程中,存在某个位置,使得.理由:作于M,于H,于N.则∴四边形AMHN为矩形,∴,,∵,∴可设,, ∴可得∵,∴, ∴.∵,, ∴,∵, ∴∴,∴∴, ∴,当时,由于点D不与点C重合,可知为等腰三角形,∵, ∴, ∴∴点D在运动过程中,存在某个位置,使得.此时.【点睛】本题考查了等腰三角形的性质与判定,勾股定理,相似三角形的性质与判定,正切的定义,掌握相似三角形的性质与判定是解题的关键.
相关试卷
这是一份【历年真题】2022年四川省遂宁市中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解),共29页。试卷主要包含了已知,则∠A的补角等于等内容,欢迎下载使用。
这是一份【历年真题】最新中考数学模拟真题练习 卷(Ⅱ)(含答案详解),共22页。
这是一份【历年真题】最新中考数学真题模拟测评 (A)卷(含答案及详解),共25页。试卷主要包含了点P,二次函数y=等内容,欢迎下载使用。