模拟真题:2022年北京市通州区中考数学三年高频真题汇总 卷(Ⅱ)(含答案及详解)
展开2022年北京市通州区中考数学三年高频真题汇总 卷(Ⅱ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列计算正确的是( )
A. B. C. D.
2、若,则的值是( )
A. B.0 C.1 D.2022
3、对于二次函数y=﹣x2+2x+3,下列说法不正确的是( )
A.开口向下
B.当x≥1时,y随x的增大而减小
C.当x=1时,y有最大值3
D.函数图象与x轴交于点(﹣1,0)和(3,0)
4、如图,为直线上的一点,平分,,,则的度数为( )
A.20° B.18° C.60° D.80°
5、下列关于x的方程中,一定是一元二次方程的是( )
A.ax2﹣bx+c=0 B.2ax(x﹣1)=2ax2+x﹣5
C.(a2+1)x2﹣x+6=0 D.(a+1)x2﹣x+a=0
6、若x=1是关于x的一元二次方程x2+ax﹣2b=0的解,则4b﹣2a的值为( )
A.﹣2 B.﹣1 C.1 D.2
7、某三棱柱的三种视图如图所示,已知俯视图中,,下列结论中:①主视图中;②左视图矩形的面积为;③俯视图的正切值为.其中正确的个数为( )
A.个 B.个 C.个 D.个
8、二次函数y=(x+2)2+5的对称轴是( )
A.直线x= B.直线x=5 C.直线x=2 D.直线x=﹣2
9、下图中能体现∠1一定大于∠2的是( )
A. B.
C. D.
10、已知抛物线的对称轴为直线,与轴的一个交点坐标为,其部分图象如图所示,下列结论中:①;②;③抛物线与轴的另一个交点的坐标为;④方程有两个不相等的实数根.其中正确的个数为( )
A.个 B.个 C.个 D.个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、计算:=___;
2、若矩形ABCD的对角线AC,BD相交于点,且,,则矩形ABCD的面积为_____________.
3、要使成为完全平方式,那么b的值是______.
4、已知,,则代数式的值为____________.
5、已知线段,延长AB至点C,使,反向延长AC至点D,使,则CD的长为__________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在平面直角坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),二次函数y=x2+bx﹣2的图象经过C点.
(1)求二次函数的解析式;
(2)若点P是抛物线的一个动点且在x轴的下方,则当点P运动至何处时,恰好使△PBC的面积等于△ABC的面积的两倍.
(3)若点Q是抛物线上的一个动点,则当点Q运动至何处时,恰好使∠QAC=45°?请你求出此时的Q点坐标.
2、某商店以每盏25元的价格采购了一批节能灯,运输过程中损坏了3盏,然后以每盏30元售完,共获利160元.该商店共购进了多少盏节能灯?
3、在ABC中,,,AD为ABC的中线,点E是射线AD上一动点,连接CE,作,射线EM与射线BA交于点F.
(1)如图1,当点E与点D重合时,求证:;
(2)如图2,当点E在线段AD上,且与点A,D不重合时,
①依题意,补全图形;
②用等式表示线段AB,AF,AE之间的数量关系,并证明.
(3)当点E在线段AD的延长线上,且时,直接写出用等式表示的线段AB,AF,AE之间的数量关系.
4、解方程:.
5、如图,在中,对角线的垂直平分线分别交,于点,,与相交于点,连接,.
(1)求证:四边形是菱形;
(2)已知,,,请你写出的值.
-参考答案-
一、单选题
1、D
【分析】
直接根据合并同类项运算法则进行计算后再判断即可.
【详解】
解:A. ,选项A计算错误,不符合题意;
B. ,选项B计算错误,不符合题意;
C. ,选项C计算错误,不符合题意;
D. ,计算正确,符合题意
故选:D
【点睛】
本题主要考查了合并同类项,熟练掌握合并同类项法则是解答本题的关键.
2、C
【分析】
先根据非负数的性质求出a和b的值,然后代入所给代数式计算即可.
【详解】
解:∵,
∴a-2=0,b+1=0,
∴a=2,b=-1,
∴=,
故选C.
【点睛】
本题考查了非负数的性质,以及求代数式的值,根据非负数的性质求出a和b的值是解答本题的关键.
3、C
【分析】
根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.
【详解】
解:y=-x2++2x+3=-(x-1)2+4,
∵a=-1<0,
∴该函数的图象开口向下,
故选项A正确;
∵对称轴是直线x=1,
∴当x≥1时,y随x的增大而减小,
故选项B正确;
∵顶点坐标为(1,4),
∴当x=1时,y有最大值4,
故选项C不正确;
当y=0时,-x2+2x+3=0,
解得:x1=-1,x2=3,
∴函数图象与x轴的交点为(-1,0)和(3,0),
故D正确.
故选:C.
【点睛】
本题考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.
4、A
【分析】
根据角平分线的定义得到,从而得到,再根据可得,即可求出结果.
【详解】
解:∵OC平分,
∴,
∴,
∵,
∴,
∴,
故选:A.
【点睛】
本题主要考查角的计算的知识点,运用好角的平分线这一知识点是解答的关键.
5、C
【分析】
根据一元二次方程的定义(含有一个未知数,并且含有未知数的项的最高次数是2的整式方程叫一元二次方程)进行判断即可.
【详解】
解:A.当a=0时,ax2+bx+c=0不是一元二次方程,故此选项不符合题意;
B.2ax(x-1)=2ax2+x-5整理后化为:-2ax-x+5=0,不是一元二次方程,故此选项不符合题意;
C.(a2+1)x2-x+6=0,是关于x的一元二次方程,故此选项符合题意;
D.当a=-1时,(a+1)x2-x+a=0不是一元二次方程,故此选项不符合题意.
故选:C.
【点睛】
本题考查了一元二次方程的定义,解题时要注意两个方面:1、一元二次方程包括三点:①是整式方程,②只含有一个未知数,③所含未知数的项的最高次数是2;2、一元二次方程的一般形式是ax2+bx+c=0(a≠0).
6、D
【分析】
将x=1代入原方程即可求出答案.
【详解】
解:将x=1代入原方程可得:1+a-2b=0,
∴a-2b=-1,
∴原式=-2(a-2b)
=2,
故选:D.
【点睛】
本题考查一元二次方程,解题的关键是正确理解一元二次方程的解的概念,本题属于基础题型.
7、A
【分析】
过点A作AD⊥BC与D,根据BD=4,,可求AD=BD,根据,得出BC=7,可得DC=BC-BD=7-4=3可判断①;根据左视图矩形的面积为3×6=可判断②;根据tanC可判断③.
【详解】
解:过点A作AD⊥BC与D,
∵BD=4,,
∴AD=BD,
∵,
∴,
∴BC=7,
∴DC=BC-BD=7-4=3,
∴①主视图中正确;
∴左视图矩形的面积为3×6=,
∴②正确;
∴tanC,
∴③正确;
其中正确的个数为为3个.
故选择A.
【点睛】
本题考查三视图与解直角三角的应用相结合,掌握三视图,三角形面积公式,正切定义,矩形面积公式是解题关键,本题比较新颖,难度不大,是创新题型.
8、D
【分析】
直接根据二次函数的顶点式进行解答即可.
【详解】
解:由二次函数y=(x+2)2+5可知,其图象的对称轴是直线x=-2.
故选:D.
【点睛】
本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键.
9、C
【分析】
由对顶角的性质可判断A,由平行线的性质可判断B,由三角形的外角的性质可判断C,由直角三角形中同角的余角相等可判断D,从而可得答案.
【详解】
解:A、∠1和∠2是对顶角,∠1=∠2.故此选项不符合题意;
B、如图,
若两线平行,则∠3=∠2,则
若两线不平行,则大小关系不确定,所以∠1不一定大于∠2.故此选项不符合题意;
C、∠1是三角形的外角,所以∠1>∠2,故此选项符合题意;
D、根据同角的余角相等,可得∠1=∠2,故此选项不符合题意.
故选:C.
【点睛】
本题考查的是对顶角的性质,平行线的性质,直角三角形中两锐角互余,三角形的外角的性质,同角的余角相等,掌握几何基本图形,基本图形的性质是解本题的关键.
10、C
【分析】
根据对称轴及抛物线与轴交点情况进行推理,进而对所得结论进行判断.
【详解】
解:①如图,开口向上,得,
,得,
抛物线与轴交于负半轴,即,
,
故①错误;
②如图,抛物线与轴有两个交点,则;
故②正确;
③由对称轴是直线,抛物线与轴的一个交点坐标为,得到:抛物线与轴的另一个交点坐标为,
故③正确;
④如图所示,当时,,
根的个数为与图象的交点个数,
有两个交点,即有两个根,
故④正确;
综上所述,正确的结论有3个.
故选:C.
【点睛】
主要考查抛物线与轴的交点,二次函数图象与二次函数系数之间的关系,解题的关键是会利用对称轴的范围求与的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
二、填空题
1、
【分析】
根据二次根式的乘法法则:(a≥0,b≥0)计算.
【详解】
解:原式==,
故答案为:.
【点睛】
本题考查了二次根式的乘除法,掌握二次根式的乘法法则,最后的化简是解题关键.
2、
【分析】
如图,过点O作,根据矩形的对角线相等且互相平分可得,,,由得,利用勾股定理求出,由矩形面积得解.
【详解】
如图,过点O作,
∵四边形ABCD是矩形,
∴,,,
∵,
∴,
∴,
∴,
∴,,
∴.
故答案为:.
【点睛】
本题考查矩形的性质与勾股定理,掌握矩形的性质是解题的关键.
3、
【分析】
根据完全平方式的性质:,可得出答案.
【详解】
∵是完全平方式
∴
解得
故答案为.
【点睛】
本题考查完全平方式,熟记完全平方式的形式,找出公式中的a和b的关键.
4、-16.5
【分析】
先把待求的式子变形,再整体代值即可得出结论.
【详解】
解:
,
∵,,
∴原式=3×(-5)-×(-3)=-15-1.5=-16.5.
故答案为:-16.5.
【点睛】
本题考查了整式的加减-化简求值,利用整体代入的思想是解此题的关键.
5、12
【分析】
先求出BC=2,得到AC=AB+BC=8,根据,求出AD=4,再利用CD=AD+AC求出答案.
【详解】
解:∵,,
∴BC=2,
∴AC=AB+BC=8,
∵,
∴AD=4,
∴CD=AD+AC=4+8=12,
故答案为:12.
【点睛】
此题考查了几何图形中线段的和差计算,正确根据题意画出图形辅助解决问题是解题的关键.
三、解答题
1、(1);(2)当点P运动至坐标为或时,恰好使△PBC的面积等于△ABC的面积的两倍; (3)或
【分析】
(1)如图,过作于 先证明 可得 再代入二次函数y=x2+bx﹣2中,再利用待定系数法求解即可;
(2)先求解 过作轴交于 再求解直线为: 设 则 再利用 再解方程即可;
(3)分两种情况讨论:如图,作关于的对称点 连接 作的角平分线 交于 交抛物线于 由 则再求解的解析式,再求解与抛物线的交点坐标即可,如图,同理可得:当平分时,射线与抛物线的交点满足 按同样的方法可得答案.
【详解】
解:(1)如图,过作于
则 而
而
二次函数y=x2+bx﹣2的图象经过C点,
解得:
二次函数的解析式为:
(2)
过作轴交于
设直线为
解得:
所以直线为:
设 则
整理得:
解得:
当时,
当时,
或
所以当点P运动至坐标为或时,恰好使△PBC的面积等于△ABC的面积的两倍.
(3)如图,作关于的对称点 连接 作的角平分线 交于 交抛物线于
由 则
平分
则
同理可得直线的解析式为:
解得:或(不合题意,舍去)
如图,同理可得:当平分时,射线与抛物线的交点满足
同理:
直线为:
解得:或(不合题意舍去)
【点睛】
本题考查的是利用待定系数法求解一次函数,二次函数关系式,全等三角形的性质与判定,等腰直角三角形的性质,一元二次方程的解法,清晰的分类讨论是解本题的关键.
2、50
【分析】
设购进x盏节能灯,列一元一次方程解答.
【详解】
解:设购进x盏节能灯,由题意得
25x+160=30(x-3)
解得x=50,
答:该商店共购进了50盏节能灯.
【点睛】
此题考查了一元一次方程的实际应用,正确理解题意是解题的关键.
3、(1)见解析;(2),证明见解析;(3)当时,,当时,
【分析】
(1)根据等腰三角形三线合一的性质得,,从而可得在中,,进而即可求解;
(2)画出图形,在线段AB上取点G,使,再证明,进而即可得到结论;
(3)分两种情况:当时,当时,分别画出图形,证明或,进而即可得到结论.
【详解】
(1)∵,
∴是等腰三角形,
∵,
∴,,
∵AD为ABC的中线,
∴,,
∴,
∵,
∴,
∴,
∴,
在中,,
∴;
(2),证明如下:
如图2,在线段AB上取点G,使,
∵,
∴是等边三角形,
∴,,
∵是等腰三角形,AD为ABC的中线,
∴,,
∴,即,
∵,
∴,
在与中,
,
∴,
∴,
∴;
(3)当时,如图3所示:
与(2)同理:在线段AB上取点H,使,
∵,
∴是等边三角形,
∴,,
∵是等腰三角形,AD为的中线,
∴,
∵,
∴,
∴,
∴,
∴,
当时,如图4所示:
在线段AB的延长线上取点N,使,
∵,
∴是等边三角形,
∴,
∵
∴,
在与中,
,
∴,
∴,
∴,
∴,
∴.
【点睛】
本题考查全等三角形的判定与性质、等腰三角形的性质以及等边三角形的判定与性质,根据题意做出辅助线找全等三角形是解题的关键.
4、
【分析】
先去分母,去括号,再移项、合并同类项,最后系数化为1即可得答案.
【详解】
去分母得:,
去括号得:,
移项得:,
合并同类项得:,
系数化1得:.
【点睛】
本题考查解一元一次方程,熟练掌握解一元一次方程的一般步骤是解题关键.
5、(1)见解析;(2)
【分析】
(1)方法一:先证明≌,可得,再证明四边形是平行四边形,结合,从而可得结论;方法二:先证明≌,可得,再证明四边形是平行四边形,结合,从而可得结论;方法三:证明从而可得结论;
(2)如图,过作于 利用菱形的性质结合三角函数先求解菱形的对角线的长及菱形的面积,再利用 求解 从而可得答案.
【详解】
(1)方法一:∵四边形是平行四边形,
∴
∴
又∵垂直平分,
∴..
∴≌.
∴.
∴四边形是平行四边形.
∵
∴四边形是菱形.
方法二:∵四边形是平行四边形,
∴.
∴
又∵垂直平分,
∴..
∴≌.
∴.
∴四边形是平行四边形.
∵,
∴四边形是菱形.
方法三:∵垂直平分,
∴,
∵四边形是平行四边形,
∴.
∴
∴≌.
∴.
∴
∴四边形是菱形.
(2)如图,过作于
四边形是菱形.
则
【点睛】
本题考查的是平行四边形的性质,菱形的判定,菱形的性质,锐角三角函数的应用,掌握“选择合适的判定方法判断菱形及利用等面积法求解菱形的高”是解本题的关键.
模拟真题湖南省中考数学三年高频真题汇总 卷(Ⅲ)(含答案详解): 这是一份模拟真题湖南省中考数学三年高频真题汇总 卷(Ⅲ)(含答案详解),共26页。试卷主要包含了已知,则的补角等于,如图,A,下列图标中,轴对称图形的是等内容,欢迎下载使用。
【真题汇总卷】湖南省中考数学三年高频真题汇总 卷(Ⅰ)(含答案详解): 这是一份【真题汇总卷】湖南省中考数学三年高频真题汇总 卷(Ⅰ)(含答案详解),共21页。试卷主要包含了下列图形是全等图形的是等内容,欢迎下载使用。
【难点解析】2022年北京市通州区中考数学三年高频真题汇总 卷(Ⅲ)(含详解): 这是一份【难点解析】2022年北京市通州区中考数学三年高频真题汇总 卷(Ⅲ)(含详解),共24页。试卷主要包含了下列说法中,正确的有,已知和是同类项,那么的值是,观察下列图形等内容,欢迎下载使用。