【中考专题】2022年中考数学第二次模拟试题(精选)
展开
这是一份【中考专题】2022年中考数学第二次模拟试题(精选),共20页。试卷主要包含了在以下实数中,若,则的值是,如图,OM平分,,,则.等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若x=1是关于x的一元二次方程x2+mx﹣3=0的一个根,则m的值是( )
A.﹣2B.﹣1C.1D.2
2、下列图形中,是中心对称图形的是( )
A.B.
C.D.
3、已知点A(m,2)与点B(1,n)关于y轴对称,那么m+n的值等于( )
A.﹣1B.1C.﹣2D.2
4、在以下实数中:-0.2020020002…,,,,,,无理数的个数是( )
A.2个B.3个C.4个D.5个
5、若,则的值是( )
A.B.0C.1D.2022
6、一队同学在参观花博会期间需要在农庄住宿,如果每间房住4个人,那么有8个人无法入住,如果每间房住5个人,那么有一间房空了3个床位,设这队同学共有人,可列得方程( )
A.B.
C.D.
7、如图,OM平分,,,则( ).
A.96°B.108°C.120°D.144°
8、一列火车匀速行驶,经过一条长400米的隧道需要30秒的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10秒,则火车的长为( )
A.B.133C.200D.400
9、二次函数的图象经过点,,,则,,的大小关系正确的为( )
A.B.C.D.
10、某次知识竞赛共有20道题,规定每答对一题得10分,答错或不答都扣5分,小明得分要超过125分,他至少要答对多少道题?如果设小明答对x道题,根据题意可列不等式( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.10x﹣5(20﹣x)≥125B.10x+5(20﹣x)≤125
C.10x+5(20﹣x)>125D.10x﹣5(20﹣x)>125
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,C是线段AB延长线上一点,D为线段BC上一点,且,E为线段AC上一点,,若,则_________.
2、不等式的最大整数解是_______.
3、若矩形ABCD的对角线AC,BD相交于点,且,,则矩形ABCD的面积为_____________.
4、深圳某商场为吸引顾客,设置了一种游戏,其规则如下:在一个不透明的纸箱中装有红球和白球共10个,这些球除颜色外都相同.凡参与游戏的顾客从纸箱中随机摸出一个球,如果摸到红球就可免费得到一个吉祥物,摸到白球没有吉祥物.据统计,参与这种游戏的顾客共有5000人,商场共发放了吉祥物1500个.则该纸箱中红球的数量约有 _____个.
5、把一些笔分给几名学生,如果每人分5支,那么余7支;如果前面的学生每人分6支,那么最后一名学生能分到笔但分到的少于3支,则共有学生___人.
三、解答题(5小题,每小题10分,共计50分)
1、已知顶点为D的抛物线交y轴于点,且与直线l交于不同的两点A、B(A、B不与点D重合).
(1)求抛物线的解析式;
(2)若,
①试说明:直线l必过定点;
②过点D作,垂足为点F,求点C到点F的最短距离.
2、化简:
(1);
(2)
3、某商店以每盏25元的价格采购了一批节能灯,运输过程中损坏了3盏,然后以每盏30元售完,共获利160元.该商店共购进了多少盏节能灯?
4、先化简,再求值:,其中.
5、如图,抛物线y=x2﹣2x+c与x轴交于A,B两点(点A在点B左侧),与y轴交于点C(0,﹣3).
(1)求AB的长.
(2)将点A向上平移n个单位至点E,过点E作DFx轴,交抛物线与点D,F.当DF=6时,求n的值.
-参考答案-
一、单选题
1、D
【分析】
把x=1代入方程x2+mx-3=0,得出一个关于m的方程,解方程即可.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
解:把x=1代入方程x2+mx-3=0得:1+m-3=0,
解得:m=2.
故选:D.
【点睛】
本题考查了一元二次方程的解和解一元一次方程,关键是能根据题意得出一个关于m的方程.
2、B
【分析】
根据中心对称图形的定义求解即可.
【详解】
解:A、不是中心对称图形,不符合题意;
B、是中心对称图形,符合题意;
C、不是中心对称图形,不符合题意;
D、不是中心对称图形,不符合题意.
故选:B.
【点睛】
此题考查了中心对称图形,解题的关键是熟练掌握中心对称图形的定义.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.
3、B
【分析】
关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此先求出m,n的值,然后代入代数式求解即可得.
【详解】
解:∵与点关于y轴对称,
∴,,
∴,
故选:B.
【点睛】
题目主要考查点关于坐标轴对称的特点,求代数式的值,理解题意,熟练掌握点关于坐标轴对称的特点是解题关键.
4、C
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.据此解答即可.
【详解】
解:无理数有-0.2020020002…,,,,共有4个.
故选:C.
【点睛】
此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.2020020002…,等有这样规律的数.解题的关键是理解无理数的定义.
5、C
【分析】
先根据非负数的性质求出a和b的值,然后代入所给代数式计算即可.
【详解】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解:∵,
∴a-2=0,b+1=0,
∴a=2,b=-1,
∴=,
故选C.
【点睛】
本题考查了非负数的性质,以及求代数式的值,根据非负数的性质求出a和b的值是解答本题的关键.
6、B
【分析】
设这队同学共有人,根据“如果每间房住4个人,那么有8个人无法入住,如果每间房住5个人,那么有一间房空了3个床位,”即可求解.
【详解】
解:设这队同学共有人,根据题意得:
.
故选:B
【点睛】
本题主要考查了一元一次方程的应用,明确题意,准确得到等量关系是解题的关键.
7、B
【分析】
设,利用关系式,,以及图中角的和差关系,得到、,再利用OM平分,列方程得到,即可求出的值.
【详解】
解:设,
∵,
∴,
∴.
∵,
∴,
∴.
∵OM平分,
∴,
∴,解得.
.
故选:B.
【点睛】
本题通过图形中的角的和差关系,利用方程的思想求解角的度数.其中涉及角的平分线的理解:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线.
8、C
【分析】
设火车的车长是x米,根据经过一条长400m的隧道需要30秒的时间,可求火车速度,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10秒,可求火车上速度,根据车速相同可列方程求解即可.
【详解】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解:设火车的长度是x米,根据题意得出:=,
解得:x=200,
答:火车的长为200米;
故选择C.
【点睛】
本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系,列方程求解.
9、B
【分析】
先求得对称轴为,开口朝下,进而根据点与的距离越远函数值越小进行判断即可.
【详解】
解:∵
∴对称轴为,,开口向下,
离对称轴越远,其函数值越小,
,,,
,
故选B
【点睛】
本题考查了二次函数图象的性质,掌握二次函数的性质是解题的关键.
10、D
【分析】
根据规定每答对一题得10分,答错或不答都扣5分,可以列出相应的不等式,从而可以解答本题.
【详解】
解:由题意可得,
10x-5(20-x)>125,
故选:D.
【点睛】
本题考查由实际问题抽象出一元一次不等式,解答本题的关键是明确题意,列出相应的不等式.
二、填空题
1、3
【分析】
设BD=a,AE=b,则CD=2a,CE=2b,根据AB=AE+BE=AE+DE-BD代入计算即可.
【详解】
设BD=a,AE=b,
∵,,
∴CD=2a,CE=2b,
∴DE=CE-CD=2b-2a=2即b-a=1,
∴AB=AE+BE=AE+DE-BD=2+b-a=2+1=3,
故答案为:3.
【点睛】
本题考查了线段的和与差,正确用线段的和差表示线段是解题的关键.
2、2
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【分析】
首先根据不等式求解不等式,再根据不等式的解集写出最大的整数解.
【详解】
解:移项,得:,
合并同类项,得:,
系数化成1得:,
则最大整数解是:2.
故答案是:2.
【点睛】
本题主要考查不等式的整数解,关键在于求解不等式.
3、
【分析】
如图,过点O作,根据矩形的对角线相等且互相平分可得,,,由得,利用勾股定理求出,由矩形面积得解.
【详解】
如图,过点O作,
∵四边形ABCD是矩形,
∴,,,
∵,
∴,
∴,
∴,
∴,,
∴.
故答案为:.
【点睛】
本题考查矩形的性质与勾股定理,掌握矩形的性质是解题的关键.
4、3
【分析】
先求出得到吉祥物的频率,再设纸箱中红球的数量为x个,根据题意列出方程,解之即可.
【详解】
解:由题意可得:
参与该游戏可免费得到吉祥物的频率为=,
设纸箱中红球的数量为x个,
则,
解得:x=3,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
所以估计纸箱中红球的数量约为3个,
故答案为:3.
【点睛】
本题主要考查利用频率估计概率,大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
5、11或12
【分析】
根据每人分5支,那么余7支;如果前面的学生每人分6支,那么最后一名学生能分到笔但分到的少于3支,得出5x+7≥6(x-1)+1,且6(x-1)+3>5x+7,分别求出即可.
【详解】
解:假设共有学生x人,根据题意得出:
,
解得:10<x≤12.
因为x是正整数,所以符合条件的x的值是11或12,
故答案为:11或12.
【点睛】
此题主要考查了一元一次不等式组的应用,根据题意找出不等关系得出不等式组是解决问题的关键.
三、解答题
1、
(1)
(2)①见解析;②
【分析】
(1)将点代入即可求得的值,继而求得二次函数的解析式;
(2)①设直线的解析为,设,,则,
联立直线解析式和抛物线解析式,根据根与系数的关系求得进而求得,证明,根据相似比求得,进而根据两个表达式相等从而得出与的关系式,代入直线解析式,根据直线过定点与无关,进而求得定点坐标;②设,由①可知经过点,则, ,进而根据90°圆周角所对的弦是直径,继而判断的轨迹是以的中点为圆心,为直径的圆,根据点与圆的位置即可求得最小值.
(1)
解:∵抛物线交y轴于点,
∴
解得
抛物线为
(2)
①如图,过点分别作轴的垂线,垂足分别为,
设直线的解析为,设,,则,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
则的坐标即为的解
即
,
轴,轴
或
或
当时,
则过定点
A、B不与点D重合
则此情况舍去;
当时,
即过定点
必过定点
②如图,设,
,,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
在以的中点为圆心,为直径的圆上运动
的最小值为
【点睛】
本题考查了待定系数法求二次函数解析式,相似三角形的性质与判定,一元二次方程根与系数的关系,点与圆的位置关系求最值,勾股定理,二次函数与直线交点问题,掌握以上知识是解题的关键.
2、(1);(2)
【分析】
(1)直接利用整式的加减运算法则化简得出答案;
(2)整式的加减,正确去括号、合并同类项即可.
【详解】
解:(1)
;
(2),
,
.
【点睛】
本题主要考查了整式的加减,正确去括号、合并同类项解题的关键是掌握相应的运算法则.
3、50
【分析】
设购进x盏节能灯,列一元一次方程解答.
【详解】
解:设购进x盏节能灯,由题意得
25x+160=30(x-3)
解得x=50,
答:该商店共购进了50盏节能灯.
【点睛】
此题考查了一元一次方程的实际应用,正确理解题意是解题的关键.
4、,-1.
【分析】
先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算即可.
【详解】
解:原式=,
当时,原式=.
【点睛】
本题考查了分式的化简与求值,能正确根据分式的运算法则进行化简是解此题的关键,注意运算顺序.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
5、(1)AB的长为4;(2)n的值为5.
【分析】
(1)利用二次函数表达式,求出其与x轴的交点、的坐标,其横坐标之差的绝对值即为AB的长.
(2)利用二次函数的对称性,求出F点的横坐标,代入二次函数表达式,求出纵坐标,最后求得n的值.
【详解】
(1)解:把(0,-3)代入y=x2-2x-c
得c=-3,
令y=x2-2x-3=0,
解得x1=3,x2=-1,
∴A(-1,0),B(3,0),
∴AB=3-(-1)=4.
(2)解:作对称轴x=1交DF于点G,G点横坐标为1,如图所示:
由题意可设:点F坐标为(,),
、关于二次函数的对称轴.
DG=GF==3,
∴,
∴n=5.
【点睛】
本题主要是考查了二次函数与x轴交点坐标以及二次函数的对称性,熟练应用二次函数的对称性进行解题,是求解这类二次函数题目的关键.
相关试卷
这是一份【中考特训】湖南省张家界市中考数学第二次模拟试题(精选),共24页。试卷主要包含了已知,则的补角等于,有理数 m等内容,欢迎下载使用。
这是一份中考专题广西来宾市中考数学第三次模拟试题(精选),共25页。试卷主要包含了单项式的次数是等内容,欢迎下载使用。
这是一份备考练习湖南省中考数学第二次模拟试题(精选),共23页。试卷主要包含了如图,点B等内容,欢迎下载使用。