


真题汇总:2022年江门市中考数学模拟测评 卷(Ⅰ)(含答案解析)
展开
这是一份真题汇总:2022年江门市中考数学模拟测评 卷(Ⅰ)(含答案解析),共25页。试卷主要包含了下列说法正确的是,的计算结果是,下列说法正确的有等内容,欢迎下载使用。
2022年江门市中考数学模拟测评 卷(Ⅰ) 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各点在反比例的图象上的是( )A.(2,-3) B.(-2,3) C.(3,2) D.(3,-2)2、若关于x的一元二次方程ax2﹣4x+2=0有两个实数根,则a的取值范围是( )A.a≤2 B.a≤2且a≠0 C.a<2 D.a<2且a≠03、已知和是同类项,那么的值是( )A.3 B.4 C.5 D.64、下列说法正确的是( )A.的系数是 B.的次数是5次C.的常数项为4 D.是三次三项式5、的计算结果是( )A. B. C. D.6、工人常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使CM=CN,过角尺顶点C作射线OC,由此作法便可得△NOC≌△MOC,其依据是( )A.SSS B.SAS C.ASA D.AAS7、下列说法正确的有( ) ①两点之间的所有连线中,线段最短;②相等的角叫对顶角;③过一点有且只有一条直线与已知直线平行;④若AC=BC,则点C是线段AB的中点; ⑤在同一平面内,经过一点有且只有一条直线与已知直线垂直.A.1个 B.2个 C.3个 D.4个8、下列关于x的方程中一定有实数根的是( )A.x2=﹣x﹣1 B.2x2﹣6x+9=0 C.x2+mx+2=0 D.x2﹣mx﹣2=09、如图,,平分,于点,交于点,若,则的长为( )A.3 B.4 C.5 D.610、已知线段AB=7,点C为直线AB上一点,且AC∶BC=4∶3,点D为线段AC的中点,则线段BD的长为( )A.5或18.5 B.5.5或7 C.5或7 D.5.5或18.5第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、数轴上表示数和的两点之间的距离为______.2、如图,BD是△ABC的角平分线,E是AB上的中点,已知△ABC的面积是12cm2,BC:AB=19:17,则△AED面积是 _____.3、如图,已知D是等边边AB上的一点,现将折叠,使点C与D重合,折痕为EF,点E、F分别在AC和BC上.如果,则的值为______.4、现有一列数,,…,,其中,,,且满足任意相邻三个数的和为相等的常数,则的值为______.5、点P为边长为2的正方形ABCD内一点,是等边三角形,点M为BC中点,N是线段BP上一动点,将线段MN绕点M顺时针旋转60°得到线段MQ,连接AQ、PQ,则的最小值为______.三、解答题(5小题,每小题10分,共计50分)1、用一面足够长的墙为一边,其余各边用总长42米的围栏建成如图所示的生态园,中间用围栏隔开.由于场地限制,垂直于墙的一边长不超过7米.(围栏宽忽略不计)(1)若生态园的面积为144平方米,求生态园垂直于墙的边长;(2)生态园的面积能否达到150平方米?请说明理由.2、我们将平面内点与多边形的位置关系分为三类:①点在多边形的内部;②点在多边形的边上;③点在多边形的外部.在平面直角坐标系x0y中,抛物线y=ax2-2ax-3a(a>0)与y轴交于点A,过顶点B作BC⊥x轴于点C,P是BC的中点,连接OP.将线段OP平移后得到线段.(1)若平移的方向为向右,当点P’在该抛物线上时,判断点C是否在四边形的边上,并说明理由;(2)若平移的方向为向下,平移的距离是(a+1)个单位长度,其中a<.记抛物线上点A,B之间的部分(不含端点)为图象T,M是图象T上任意一点,判断点M与四边形的位置关系,并说明理由.3、计算:.4、解方程:x2﹣4x﹣9996=0.5、如图,如图,一楼房AB后有一假山,CD的坡度为i=1:2,山坡坡面上E点处有一休息亭,测得假山脚与楼房水平距离BC=24米,与亭子距离CE=8米,小丽从楼房房顶测得E的俯角为45°.(1)求点E到水平地面的距离;(2)求楼房AB的高. -参考答案-一、单选题1、C【分析】根据反比例函数图象上点的坐标特征对各选项进行判断.【详解】解:∵2×(−3)=−6,−2×3=−6,3×(−2)=−6, 而3×2=6,∴点(2,−3),(−2,3)(3,−2),不在反比例函数图象上,点(3,2)在反比例函数图象上.故选:C.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.2、B【分析】根据方程有两个实数根,可得根的判别式的值不小于0,由此可得关于a的不等式,解不等式再结合一元二次方程的定义即可得答案【详解】解:根据题意得a≠0且Δ=(−4)2−4•a•2≥0,解得a≤2且a≠0.故选:B.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2−4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.3、C【分析】把字母相同且相同字母的指数也分别相同的几个项叫做同类项,根据同类项的定义即可解决.【详解】由题意知:n=2,m=3,则m+n=3+2=5故选:C【点睛】本题主要考查了同类项的概念,掌握同类项的概念是解答本题的关键.4、A【分析】根据单项式的系数、次数的定义以及多项式次数、项数、常数项的定义可解决此题.【详解】解:A、的系数是,故选项正确;B、的次数是3次,故选项错误;C、的常数项为-4,故选项错误;D、是二次三项式,故选项错误;故选A.【点睛】本题主要考查单项式的系数、次数的定义以及多项式次数、项数、常数项的定义,熟练掌握单项式的系数、次数的定义以及多项式次数、项数、常数项的定义是解决本题的关键.5、D【分析】原式化为,根据平方差公式进行求解即可. 【详解】解: 故选D.【点睛】本题考查了平方差公式的应用.解题的关键与难点在于应用平方差公式.6、A【分析】利用边边边,可得△NOC≌△MOC,即可求解.【详解】解:∵OM=ON,CM=CN, ,∴△NOC≌△MOC(SSS).故选:A【点睛】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法——边角边、角边角、角角边、边边边是解题的关键.7、B【分析】根据线段的性质,对顶角相等的性质,平行公理,对各小题分析判断即可得解.【详解】解:①两点之间的所有连线中,线段最短,正确;②相等的角不一定是对顶角,但对顶角相等,故本小题错误;③过直线外一点有且仅有一条直线与已知直线平行,故本小题错误;④若AC=BC,且A、B、C三点共线,则点C是线段AB的中点,否则不是,故本小题错误,⑤在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;所以,正确的结论有①⑤共2个.故选:B.【点睛】本题考查了平行公理,线段的性质,对顶角的判断,是基础题,熟记概念与性质是解题的关键.8、D【分析】分别求出方程的判别式,根据判别式的三种情况分析解答.【详解】解:A、∵x2=﹣x﹣1,∴,∵,∴该方程没有实数根;B、2x2﹣6x+9=0,∵,∴该方程没有实数根;C、x2+mx+2=0,∵,无法判断与0的大小关系,∴无法判断方程根的情况;D、x2﹣mx﹣2=0,∵,∴方程一定有实数根,故选:D.【点睛】此题考查了一元二次方程根的情况,正确掌握判别式的计算方法及根的三种情况是解题的关键.9、D【分析】过作于,由题意可知,由角角边可证得,故,由直角三角形中30°的角所对的边是斜边的一半可知,再由等角对等边即可知.【详解】解:过作于,,交于点,平分,,,OP=OP,,又,,故选:D.【点睛】本题考查了角平分线的性质,平行线的性质,全等三角形的判定及性质以及在直角三角形中,如果一个锐角等于,那么它所对的直角边等于斜边的一半.两直线平行,内错角相等.10、C【分析】根据题意画出图形,再分点C在线段AB上或线段AB的延长线上两种情况进行讨论.【详解】解:点C在线段AB上时,如图:∵AB=7,AC∶BC=4∶3,∴AC=4,BC=3,∵点D为线段AC的中点,∴AD=DC=2,∴BD=DC+BC=5;点C在线段AB的延长线上时,∵AB=7,AC∶BC=4∶3,设BC=3x,则AC=4x,∴AC-BC=AB,即4x-3x=7,解得x=7,∴BC=21,则AC=28,∵点D为线段AC的中点,∴AD=DC=14,∴BD=AD-AB=7;综上,线段BD的长为5或7.故选:C.【点睛】本题考查了两点间的距离,线段中点的定义,利用线段的比例得出AC、BC的长是解题关键,要分类讨论,以防遗漏.二、填空题1、##【分析】根据数轴上两点间的距离,可得﹣(﹣5)再计算,即可求解.【详解】解:﹣(﹣5)=+5=.故答案为:【点睛】本题主要考查了数轴上两点间的距离,二次根式的减法运算,熟练掌握数轴上两点间的距离,二次根式的减法运算法则是解题的关键.2、【分析】根据角平分线的性质得出DF=DG,再由三角形面积计算即可得答案.【详解】解:作DG⊥AB,交AB的延长线于点D,作DF⊥BC, ∴BD是△ABC的角平分线,∴DF=DG,∵BC:AB=19:17,设DF=DG=h,BC=19a,AB=17a,∵△ABC的面积是12cm2,∴,∴,∴36ah=24,∴ah=,∵E是AB上的中点,∴AE=,∴△AED面积=×h=(cm2).故答案为:cm2.【点睛】本题考查了根据角平分线的性质和三角形面积的计算,做题的关键是掌握角平分线的性质.3、7:8【分析】设AD=2x,DB=3x,连接DE、DF,由折叠的性质及等边三角形的性质可得△ADE∽△BFD,由相似三角形的性质即可求得CE:CF的值.【详解】设AD=2x,DB=3x,则AB=5x连接DE、DF,如图所示 ∵△ABC是等边三角形∴BC=AC=AB=5x,∠A=∠B=∠ACB=60° 由折叠的性质得:DE=CE,DF=CF,∠EDF=∠ACB=60°∴∠ADE+∠BDF=180°−∠EDF=120°∵∠BDF+∠DFB=180°−∠B=120°∴∠ADE=∠DFB∴△ADE∽△BFD∴即CE:CF=7:8故答案为:7:8【点睛】本题考查了等边三角形的性质,折叠的性质,相似三角形的判定与性质等知识,证明三角形相似是本题的关键.4、-2690【分析】先根据任意相邻三个数的和为相等的常数可推出x1=x4=x7=…=x2020=x7=5,x2=x5=x8=…=x2021=-3,x3=x6=x9=…=x333=x2019=-6,由此可求x1+x2+x3+…+x2021的值.【详解】解:∵x1+x2+x3=x2+x3+x4,∴x1=x4,同理可得:x1=x4=x7=…=x2020=x7=5,x2=x5=x8=…=x2021=-3,x3=x6=x9=…=x333=x2019=-6,∴x1+x2+x3=-4,∵2021=673×3+2, ∴x1+x2+x3+…+x2021=(-4)×673+(5-3)=-2692+2=-2690.故答案为:-2690.【点睛】本题考查数字的变化规律,通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.5、【分析】如图,取的中点,连接,,,证明,进而证明在上运动, 且垂直平分,根据,求得最值,根据正方形的性质和勾股定理求得的长即可求得的最小值.【详解】解:如图,取的中点,连接,,,将线段MN绕点M顺时针旋转60°得到线段MQ,,是等边三角形,,是的中点,是的中点是等边三角形,即在和中,又是的中点点在上是的中点,是等边三角,又垂直平分即的最小值为四边形是正方形,且的最小值为故答案为:【点睛】本题考查了正方形的性质等边三角形的性质,旋转的性质,全等三角形的性质与判定,勾股定理,垂直平分线的性质与判定,根据以上知识转化线段是解题的关键.三、解答题1、(1)6米(2)不能达到,理由见解析【分析】(1)设生态园垂直于墙的边长为x米,则可得生态园平行于墙的边长,从而由面积关系即可得到方程,解方程即可;(2)方法与(1)相同,判断所得方程有无解即可.(1)设生态园垂直于墙的边长为x米,则x≤7,生态园平行于墙的边长为(42-3x)米由题意得:x(42-3x)=144即解得:(舍去)即生态园垂直于墙的边长为6米.(2)不能,理由如下:设生态园垂直于墙的边长为y米,则生态园平行于墙的边长为(42-3y)米由题意得:y(42-3y)=150即由于所以此一元二次方程在实数范围内无解即生态园的面积不能达到150平方米.【点睛】本题考查了一元二次方程在实际生活中的应用,理解题意并根据等量关系正确列出方程是解题的关键.2、(1)点C在四边形边上,理由见详解;(2)点M在四边形的内部,理由见详解.【分析】(1)由题意易得抛物线的对称轴为直线,顶点坐标,点,则有点,然后设平移后点,把点的坐标代入解析式求解m,进而问题可求解;(2)由(1)及题意易得,则有,然后问题可求解.【详解】解:(1)点C在四边形边上,理由如下:令x=0,则有y= -3a,即,由抛物线y=ax2-2ax-3a(a>0)可知:,∴顶点,对称轴为直线,∵BC⊥x轴,∴,∵P是BC的中点,∴,当线段OP向右平移后得到线段的函数图象如图所示:设平移后点,∵点在该抛物线上,∴,解得:(负根舍去),∴,∴点C在四边形边上;(2)当线段OP向下平移(a+1)个单位长度后得到线段的函数图象如图所示:∴,∵,∴,∵顶点坐标,点,∴,∴点都在点A、B的下方,∵抛物线上点A,B之间的部分(不含端点)为图象T,M是图象T上任意一点,∴点M在四边形的内部.【点睛】本题主要考查二次函数的综合,熟练掌握二次函数的图象与性质是解题的关键.3、【分析】由实数的运算法则计算即可.【详解】解:原式.【点睛】本题考查了实数的混合运算,实数包括有理数和无理数,所以实数的混合运算包含了绝对值,幂的运算,开平方开立方等全部计算形式,仍满足先乘除后加减,有括号先算括号内的运算顺序.4、,【分析】运用因式分解法求解方程即可.【详解】解:x2﹣4x﹣9996=0 ∴,【点睛】本题考查了解一元二次方程-因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).5、(1)8米(2)48米【分析】(1)过点E作EF⊥BC的延长线于F,根据CD的坡度为i=1:2,CE=8米,可得EF=8米,CF=16米;(2)过E作EH⊥AB于点H,根据锐角三角函数即可求出AH,进而可得AB.(1)解:过点E作的延长线于F.在中,∵CD的坡度,∴∵,∴,米,∴点E到水平地面的距离为8米.(2)解:作于点H,∵,,∴四边形BFEH为矩形;∴,,∵,,∴,在中,∵,∴,∴.∴楼房AB的高为48米.【点睛】本题考查了解直角三角形的应用−仰角俯角问题,坡度坡角问题,解决本题的关键是掌握仰角俯角定义.
相关试卷
这是一份【真题汇总卷】2022年江门市中考数学模拟考试 A卷(含答案解析),共21页。试卷主要包含了下列说法正确的是,如果与的差是单项式,那么,下列命题错误的是,多项式去括号,得等内容,欢迎下载使用。
这是一份【真题汇总卷】2022年江西省抚州市中考数学模拟真题测评 A卷(含答案及解析),共29页。试卷主要包含了在下列运算中,正确的是等内容,欢迎下载使用。
这是一份【真题汇总卷】2022年广东省河源市中考数学模拟真题测评 A卷(含答案及解析),共22页。试卷主要包含了在下列运算中,正确的是等内容,欢迎下载使用。