真题汇总:2022年河北省石家庄市中考数学模拟真题测评 A卷(含答案解析)
展开2022年河北省石家庄市中考数学模拟真题测评 A卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,过圆心且互相垂直的两条直线将两个同心圆分成了若干部分,在该图形区域内任取一点,则该点取自阴影部分的概率是( )
A. B. C. D.
2、一个不透明的盒子里装有a个除颜色外完全相同的球,其中有6个白球,每次将球充分搅匀后,任意摸出1个球记下颜色然后再放回盒子里,通过如此大量重复试验,发现摸到白球的频率稳定在0.4左右,则a的值约为( )
A.10 B.12 C.15 D.18
3、点P到x轴的距离是3,到y轴的距离是2,且点P在y轴的左侧,则点P的坐标是( )
A.(-2,3)或(-2,-3) B.(-2,3)
C.(-3,2)或(-3,-2) D.(-3,2)
4、如图所示,BE⊥AC于点D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=( )
A.25° B.27° C.30° D.45°
5、已知线段AB=7,点C为直线AB上一点,且AC∶BC=4∶3,点D为线段AC的中点,则线段BD的长为( )
A.5或18.5 B.5.5或7 C.5或7 D.5.5或18.5
6、菱形ABCD的周长是8cm,∠ABC=60°,那么这个菱形的对角线BD的长是( )
A.cm B.2cm C.1cm D.2cm
7、如图,各图形由大小相同的黑点组成,图1中有2个点,图2中有7个点,图3中有14个点,……,按此规律,第6个图中黑点的个数是( )
A.47 B.62 C.79 D.98
8、人类的遗传物质是DNA,其中最短的22号染色体含 30000000个核苷酸,30000000用科学记数法表示为( )
A.3×106 B.3×107 C.3×108 D.0.3×108
9、今年,网络购物已经成为人们生活中越来越常用的购物方式.元旦期间,某快递分派站有包裹若干件需快递员派送,若每个快递员派送7件,还剩6件;若每个快递员派送8件,还差1件,设该分派站有x名快递,则可列方程为( )
A. B. C. D.
10、一种药品经过两次降价,药价从每盒60元下调至48.6元,设平均每次降价的百分率为x,根据题意所列方程正确的是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,AC=12cm,AB=5cm,点D是BC的中点,那么CD=________________cm.
2、如图,在中,是边的垂直平分线,,的周长为23,则的周长为_________.
3、用长的铁丝,折成一个面积是的矩形,则这个矩形的长和宽分别为_______.
4、把化为以度为单位,结果是______.
5、如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,将△ADE沿直线DE翻折后与△FDE重合,DF、EF分别与边BC交于点M、N,如果DE=8,,那么MN的长是_____.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在△ABC中,已知AD平分∠BAC,E是边AB上的一点,AE=AC,F是边AC上的一点,联结DE、CE、FE,当EC平分∠DEF时,猜测EF、BC的位置关系,并说明理由.(完成以下说理过程)
解:EF、BC的位置关系是______.
说理如下:
因为AD是∠BAC的角平分线(已知)
所以∠1=∠2.
在△AED和△ACD中,,
所以△AED≌△ACD(SAS).
得__________(全等三角形的对应边相等).
2、(1)解方程:
(2)我国古代数学专著《九章算术》中记载:“今有宛田,下周三十步,径十六步,问为田几何?”注释:宛田是指扇形形状的田,下周是指弧长,径是指扇形所在圆的直径.求这口宛田的面积.
3、如图,已知点、分别在中的边、的延长线上,且.
(1)如果,,,求的长;
(2)如果,,,过点作,垂足为点,求的长.
4、解下列方程:
(1);
(2)
5、疫情期间,小明到口罩厂参加社会实践活动,了解到以下关于口罩生产的信息:无纺布的市场价为13000元/吨,熔喷布的市场价为14700元/吨,2吨无纺布与1吨熔喷布能生产110万片口罩.另外生产口罩的辅料信息(说明:每片口罩需要一只鼻梁条、两条耳带)如表所示:
| 鼻梁条 | 耳带 |
成本 | 90元/箱 | 230元/箱 |
制作配件数目 | 25000只/箱 | 100000只/箱 |
(1)生产110万片口罩需要鼻梁条 箱,耳带 箱;
(2)小明了解到生产和销售口罩的过程中还需支出电费、员工工资、机器损耗及应缴纳的税款等费用.经过统计小明发现每片口罩还需支出上述费用大约0.1548元,求每片口罩的成本是多少元?
(3)为控制疫情蔓延,口罩厂接到上级下达的用不超过7天紧急生产销售44万片口罩的任务.经市场预测,100片装大包销售,每包价格为45.8元;10片装小包销售,每包价格为5.8元.该厂每天可包装800大包或2000小包(同一天两种包装方式不能同时进行),且每天需要另外支付2000元费用(不足一天按照一天计费).为在规定时间内完成任务且获得最大利润,该厂设计了三种备选方案,
方案一:全部大包销售;
方案二:全部小包销售;
方案三:同时采用两种包装方式且恰好用7天完成任务.
请你通过计算,为口罩厂做出决策.
-参考答案-
一、单选题
1、D
【分析】
旋转阴影部分后,阴影部分是一个半圆,根据概率公式可求解
【详解】
解:旋转阴影部分,如图,
∴该点取自阴影部分的概率是
故选:D
【点睛】
本题主要考查概率公式,求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.
2、C
【分析】
在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从摸到白球的频率稳定在0.4左右得到比例关系,列出方程求解即可.
【详解】
解:由题意可得,
,
解得,a=15.
经检验,a=15是原方程的解
故选:C.
【点睛】
本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据白球的频率得到相应的等量关系.
3、A
【分析】
根据点P到坐标轴的距离以及点P在平面直角坐标系中的位置求解即可.
【详解】
解:∵点P在y轴左侧,
∴点P在第二象限或第三象限,
∵点P到x轴的距离是3,到y轴距离是2,
∴点P的坐标是(-2,3)或(-2,-3),
故选:A.
【点睛】
此题考查了平面直角坐标系中点的坐标表示,点到坐标轴的距离,解题的关键是熟练掌握平面直角坐标系中点的坐标表示,点到坐标轴的距离.
4、B
【分析】
根据BE⊥AC,AD=CD,得到AB=BC,∠ABC,证明△ABD≌△CED,求出∠E=∠ABE=27°.
【详解】
解:∵BE⊥AC,AD=CD,
∴BE是AC的垂直平分线,
∴AB=BC,
∴∠ABC=27°,
∵AD=CD,BD=ED,∠ADB=∠CDE,
∴△ABD≌△CED,
∴∠E=∠ABE=27°,
故选:B.
【点睛】
此题考查了线段垂直平分线的性质,全等三角形的判定及性质,熟记线段垂直平分线的性质是解题的关键.
5、C
【分析】
根据题意画出图形,再分点C在线段AB上或线段AB的延长线上两种情况进行讨论.
【详解】
解:点C在线段AB上时,如图:
∵AB=7,AC∶BC=4∶3,
∴AC=4,BC=3,
∵点D为线段AC的中点,
∴AD=DC=2,
∴BD=DC+BC=5;
点C在线段AB的延长线上时,
∵AB=7,AC∶BC=4∶3,
设BC=3x,则AC=4x,
∴AC-BC=AB,即4x-3x=7,
解得x=7,
∴BC=21,则AC=28,
∵点D为线段AC的中点,
∴AD=DC=14,
∴BD=AD-AB=7;
综上,线段BD的长为5或7.
故选:C.
【点睛】
本题考查了两点间的距离,线段中点的定义,利用线段的比例得出AC、BC的长是解题关键,要分类讨论,以防遗漏.
6、B
【分析】
由菱形的性质得AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,再证△ABC是等边三角形,得AC=AB=2(cm),则OA=1(cm),然后由勾股定理求出OB=(cm),即可求解.
【详解】
解:∵菱形ABCD的周长为8cm,
∴AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,
∵∠ABC=60°,
∴△ABC是等边三角形,
∴AC=AB=2cm,
∴OA=1(cm),
在Rt△AOB中,由勾股定理得:OB===(cm),
∴BD=2OB=2(cm),
故选:B.
【点睛】
此题考查了菱形的性质,勾股定理,等边三角形的性质和判定,解题的关键是熟练掌握菱形的性质,勾股定理,等边三角形的性质和判定方法.
7、A
【分析】
根据题意得:第1个图中黑点的个数是 ,第2个图中黑点的个数是 ,第3个图中黑点的个数是,第4个图中黑点的个数是 ,……,由此发现,第 个图中黑点的个数是 ,即可求解.
【详解】
解:根据题意得:第1个图中黑点的个数是 ,
第2个图中黑点的个数是 ,
第3个图中黑点的个数是,
第4个图中黑点的个数是 ,
……,
由此发现,第 个图中黑点的个数是 ,
∴第6个图中黑点的个数是 .
故选:A
【点睛】
本题主要考查了图形类规律题,明确题意,准确得到规律是解题的关键.
8、B
【分析】
用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.
【详解】
解:30000000=3×107.
故选:B.
【点睛】
本题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.
9、B
【分析】
设该分派站有x个快递员,根据“若每个快递员派送7件,还剩6件;若每个快递员派送8件,还差1件”,即可得出关于x的一元一次方程,求出答案.
【详解】
解:设该分派站有x名快递员,则可列方程为:
7x+6=8x-1.
故选:B.
【点睛】
本题考查了由实际问题抽象出一元一次方程,找准等量关系是解题的关键.
10、B
【分析】
根据等量关系:原价×(1-x)2=现价列方程即可.
【详解】
解:根据题意,得:,
故答案为:B.
【点睛】
本题考查一元二次方程的应用,找准等量关系列出方程是解答的关键.
二、填空题
1、
【分析】
首先根据线段的和差求出BC的长,再利用线段的中点可得CD.
【详解】
∵AC=12cm,AB=5cm,
∴BC=AC﹣AB=7cm,
∵点D是BC的中点,
∴CD=BC=cm.
故答案为:.
【点睛】
本题考查线段的和差,掌握线段中点的定义是解题关键.
2、33
【分析】
根据线段垂直平分线的性质,可得AD=CD,AC=2AE= ,再由的周长为23,可得AB+BC= ,即可求解.
【详解】
解:∵是边的垂直平分线,
∴AD=CD,AC=2AE= ,
∴AD+BD=CD+BD=BC,
∵的周长为23,
∴AB+AD+BD=AB+BC= ,
∴的周长为 .
故答案为:33
【点睛】
本题主要考查了线段垂直平分线的性质定理,熟练掌握线段垂直平分线上的点到线段两端的距离相等是解题的关键.
3、6cm,5cm
【分析】
设长是x厘米,则宽是(11-x)cm,根据矩形的面积公式即可列出方程求解.
【详解】
解:设长是x厘米,则宽是(11-x)cm,
根据题意得:x(11-x)=30,
整理得
解得:x1=5,x2=6,
则当x=5时,11-x=6(cm);
当x=6时,11-x=5(cm),
则长是6cm,宽是5cm,
故答案为6cm,5cm.
【点睛】
本题考查了一元二次方程的应用,熟练掌握长方形的面积公式、正确理解相等关系是解题的关键.
4、35.2°
【分析】
根据角的单位制换算法则求解即可.
【详解】
,
,
,
.
故答案为:.
【点睛】
本题考查了角的单位制换算法则,掌握换算法则是解题关键.
5、4
【分析】
先根据折叠的性质得DA=DF,∠ADE=∠FDE,再根据平行线的性质和等量代换得到∠B=∠BMD,则DB=DM,接着利用比例的性质得到FM=DM,然后证明△FMN∽△FDE,从而利用相似比可计算出MN的长.
【详解】
解:∵△ADE沿直线DE翻折后与△FDE重合,
∴DA=DF,∠ADE=∠FDE,
∵DE∥BC,
∴∠ADE=∠B,∠FDE=∠BMD,
∴∠B=∠BMD,
∴DB=DM,
∵= ,
∴=2,
∴=2,
∴FM=DM,
∵MN∥DE,
∴△FMN∽△FDE,
∴== ,
∴MN=DE=×8=4.
故答案为:4
【点睛】
本题主要考查了相似三角形的判定和性质,平行线分线段成比例,图形的折叠,熟练掌握相似三角形的判定和性质,平行线分线段成比例,图形的折叠性质是解题的关键.
三、解答题
1、EF∥BC,DE=DC.
【分析】
先利用△AED≌△ACD得到∠3=∠4,利用角的平分线,转化为一对相等的内错角,继而判定直线的平行.
【详解】
解:EF、BC的位置关系是EF∥BC.
理由如下:
如图,
∵AD是∠BAC的角平分线(已知)
∴∠1=∠2.
在△AED和△ACD中,
,
∴△AED≌△ACD(SAS).
∴DE=DC(全等三角形的对应边相等),
∴∠3=∠4.
∵EC平分∠DEF(已知),
∴∠3=∠5.
∴∠4=∠5.
所以EF∥BC(内错角相等,两直线平行).
故答案为:EF∥BC,∠1=∠2,AD=AD,DE=DC.
【点睛】
本题考查了三角形的全等和性质,角的平分线即从角的顶点出发的射线把这个角分成相等的两个角,等腰三角形的性质,平行线的判定,熟练掌握灯光要三角形的性质,平行线的判定是解题的关键.
2、(1),;(2)平方步
【分析】
(1)利用配方法,即可求解;
(2)利用扇形的面积公式,即可求解.
【详解】
解:(1),,
配方,得,
∴,
∴,;
(2)解:∵扇形的田,弧长30步,其所在圆的直径是16步,
∴这块田的面积(平方步).
【点睛】
本题主要考查了解一元二次方程,求扇形的面积,熟练掌握一元二次方程的解法,扇形的面积等于 乘以弧长再乘以扇形的半径是解题的关键.
3、
(1)8;
(2).
【分析】
(1)根据,得出∠E=∠C,∠EDA=∠B,可证△DEA∽△BCA,得出,可求,根据,得出,求BC即可;
(2)根据,得出△DEA∽△BCA,得出,根据,得出,,在中,,代入数据得出,即可求出DF
(1)
解:∵,
∴∠E=∠C,∠EDA=∠B,
∴△DEA∽△BCA,
∴,
∵,,
∴,
∵,
∴.
∴.
(2)
解:∵,
∴△DEA∽△BCA,
∴,
∵,
∴,
∵,
∴,
∴,
∵,垂足为点,
∴.
在中,,
即,
∴.
【点睛】
本题考查平行线性质,三角形相似判定与性质,锐角三角函数,掌握平行线性质,三角形相似判定与性质,锐角三角函数是解题关键.
4、
(1)
(2)
【解析】
(1)
解:,
,
解得:;
(2)
解:,
,
,
,
解得:.
【点睛】
本题考查了一元一次方程的求解,解题的关键是掌握解一元一次方程的一般步骤.
5、
(1)44,22
(2)0.2元
(3)选择方案三,即同时采用两种包装方式且恰好用7天完成任务销售更有利
【分析】
(1)利用口罩片数×1÷25000;利用口罩片数×2÷100000;
(2)无纺布的市场价13000元/吨×2+熔喷布的市场价14700元/吨×1+44箱×90+22箱×230求出总费用.利用总费用÷110万+0.1548即可;
(3)方案一:先确定天数天<7.然后口罩包数×45.8-6天费用-成本=利润;方案二:先确定天数天>7天(舍去).;方案三:刚好7天,确定每类加工天数,列一元一次方程设包装小包的天数为x,根据等量关系小包口罩片数×每天完成包数×天数x+大包口罩片数×每天完成包数×(7-小包天数x)=44万,列方程,解方程求出 .再计算利润=小包数×单价+大包数×单价-其它-成本计算,然后比较利润大小即可
(1)
解:鼻梁条:1100000÷25000=44箱;耳带:1100000×2÷100000=22箱,
故答案为44;22;
(2)
解:(元).
(元).
(元).
答:每片口罩的成本是0.2元.
(3)
方案一:全部大包销售:
天.
∴
(元).
方案二:全部小包销售:
天>7天(舍去).
方案三:设包装小包的天数为x,
由题意得:.
解得:.
∴(片).
∴,
=23200+183200-12000-88000,
,
(元).
∵,
∴选择方案三.
答:选择方案三,即同时采用两种包装方式且恰好用7天完成任务销售更有利.
【点睛】
本题考查有理数的乘除混合运算在生活中运用,一元一次方程的应用,方案设计,掌握有理数的乘除混合运算在生活中运用,一元一次方程的应用,方案设计,仔细阅读题目,分析好各种数据,选择计算方法与应用计算的法则是解题关键.
【真题汇总卷】2022年江西省抚州市中考数学模拟真题测评 A卷(含答案及解析): 这是一份【真题汇总卷】2022年江西省抚州市中考数学模拟真题测评 A卷(含答案及解析),共29页。试卷主要包含了在下列运算中,正确的是等内容,欢迎下载使用。
【真题汇总卷】2022年河北省石家庄市中考数学真题模拟测评 (A)卷(精选): 这是一份【真题汇总卷】2022年河北省石家庄市中考数学真题模拟测评 (A)卷(精选),共20页。试卷主要包含了下列计算中正确的是,下列各点在反比例的图象上的是等内容,欢迎下载使用。
【真题汇总卷】2022年河北省石家庄市中考数学备考真题模拟测评 卷(Ⅰ)(精选): 这是一份【真题汇总卷】2022年河北省石家庄市中考数学备考真题模拟测评 卷(Ⅰ)(精选),共24页。试卷主要包含了若,,且a,b同号,则的值为,若,则的值是,在中,,,则等内容,欢迎下载使用。