【高频真题解析】2022年北京市昌平区中考数学模拟测评 卷(Ⅰ)(精选)
展开2022年北京市昌平区中考数学模拟测评 卷(Ⅰ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知有理数在数轴上的位置如图所示,且,则代数式的值为( ).
A. B.0 C. D.
2、一队同学在参观花博会期间需要在农庄住宿,如果每间房住4个人,那么有8个人无法入住,如果每间房住5个人,那么有一间房空了3个床位,设这队同学共有人,可列得方程( )
A. B.
C. D.
3、下列命题正确的是
A.零的倒数是零
B.乘积是1的两数互为倒数
C.如果一个数是,那么它的倒数是
D.任何不等于0的数的倒数都大于零
4、有下列说法:①两条不相交的直线叫平行线;②同一平面内,过一点有且只有一条直线与已知直线垂直;③两条直线相交所成的四个角中,如果有两个角相等,那么这两条直线互相垂直;④有公共顶点的两个角是对顶角.其中说法正确的个数是( )
A.1 B.2 C.3 D.4
5、下列方程是一元二次方程的是( )
A.x2+3xy=3 B.x2+=3 C.x2+2x D.x2=3
6、如图,是多功能扳手和各部分功能介绍的图片.阅读功能介绍,计算图片中∠α的度数为( )
A.60° B.120° C.135° D.150°
7、下列说法中,正确的有( )
①射线AB和射线BA是同一条射线;②若,则点B为线段AC的中点;③连接A、B两点,使线段AB过点C;④两点的所有连线中,线段最短.
A.0个 B.1个 C.2个 D.3个
8、若关于x的不等式组无解,则m的取值范围是( )
A. B. C. D.
9、下列判断错误的是( )
A.若,则 B.若,则
C.若,则 D.若,则
10、如图,在平行四边形ABCD中,E是AD上一点,且DE=2AE,连接BE交AC于点F,已知S△AFE=1,则S△ABD的值是( )
A.9 B.10 C.12 D.14
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、经过点M(3,1)且平行于x轴的直线可以表示为直线 ______.
2、把一些笔分给几名学生,如果每人分5支,那么余7支;如果前面的学生每人分6支,那么最后一名学生能分到笔但分到的少于3支,则共有学生___人.
3、如图,是用若干个边长为1的小正方体堆积而成的几何体,该几何体的左视图的面积为__________
4、比较大小:-7______-8(填入>”或“<”号)..
5、计算:_________,_________,_________.分解因式:_________,_________,________.
三、解答题(5小题,每小题10分,共计50分)
1、老师布置了一道化简求值题,如下:求的值,其中,.
(1)小海准备完成时发现第一项的系数被同学涂了一下模糊不清了,同桌说他记得系数是.请你按同桌的提示,帮小海化简求值;
(2)科代表发现系数被涂后,很快把正确的系数写了上去。同学们计算后发现,老师给出的“”这个条件是多余的,请你算一算科代表补上的系数是多少?
2、如图,点E是矩形ABCD的边BA延长线上一点,连接ED,EC,EC交AD于点G,作CF∥ED交AB于点F,DC=DE.
(1)求证:四边形CDEF是菱形;
(2)若BC=3,CD=5,求AG的长.
3、某药店在防治新型冠状病毒期间,购进甲、乙两种医疗防护口罩,已知每件甲种口罩的价格比每件乙种口罩的价格贵8元,用1200元购买甲种口罩的件数恰好与用1000元购买乙种口罩的件数相同.
(1)求甲、乙两种口罩每件的价格各是多少元?
(2)计划购买这两种口罩共80件,且投入的经费不超过3600元,那么,最多可购买多少件甲种口罩?
4、如图,一次函数与反比例函数(k≠0)交于点A、B两点,且点A的坐标为(1,3),一次函数与轴交于点C,连接OA、OB.
(1)求一次函数和反比例函数的表达式;
(2)求点B的坐标及的面积;
(3)过点A作轴的垂线,垂足为点D.点M是反比例函数第一象限内图像上的一个动点,过点M作轴的垂线交轴于点N,连接CM.当与Rt△CNM相似时求M点的坐标.
5、如图△ABC中,∠B=60°,∠BAC与∠ACB的角平分线AD、CE交于O.求证:AC=AE+DC.
-参考答案-
一、单选题
1、C
【分析】
首先根据数轴的信息判断出有理数的大小关系,然后确定各绝对值中代数式的符号,即可根据绝对值的性质化简求解.
【详解】
解:由图可知:,
∴,,,,
∴,
故选:C.
【点睛】
本题考查数轴与有理数,以及化简绝对值,整式的加减运算等,理解数轴上表示的有理数的性质,掌握化简绝对值的方法以及整式的加减运算法则是解题关键.
2、B
【分析】
设这队同学共有人,根据“如果每间房住4个人,那么有8个人无法入住,如果每间房住5个人,那么有一间房空了3个床位,”即可求解.
【详解】
解:设这队同学共有人,根据题意得:
.
故选:B
【点睛】
本题主要考查了一元一次方程的应用,明确题意,准确得到等量关系是解题的关键.
3、B
【分析】
根据倒数的概念、有理数的大小比较法则判断.
【详解】
解:、零没有倒数,本选项说法错误;
、乘积是1的两数互为倒数,本选项说法正确;
、如果,则没有倒数,本选项说法错误;
、的倒数是,,则任何不等于0的数的倒数都大于零说法错误;
故选:.
【点睛】
本题考查了有理数的乘法及倒数的概念,熟练掌握倒数概念是关键.
4、A
【分析】
根据平行线的定义、垂直的定义及垂线的唯一性、对顶角的含义即可判断.
【详解】
同一平面内不相交的两条直线叫做平行线,故说法①错误;说法②正确;两条直线相交所成的四个角中,如果有一个角是直角,那么这两条直线互相垂直,当这两个相等的角是对顶角时则不垂直,故说法③错误;根据对顶角的定义知,说法④错误;故正确的说法有1个;
故选:A
【点睛】
本题考查了两条直线的位置关系中的相关概念及性质,掌握这些概念是关键.
5、D
【分析】
根据一元二次方程的定义逐个判断即可.只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.
【详解】
解:A.是二元二次方程,不是一元二次方程,故本选项不符合题意;
B.是分式方程,故本选项不符合题意;
C.不是方程,故本选项不符合题意;
D.是一元二次方程,故本选项符合题意;
故选:D.
【点睛】
本题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键.
6、B
【分析】
观察图形发现∠α是正六边形的一个内角,直接求正六边形的内角即可.
【详解】
∠α=
故选:B.
【点睛】
本题考查正多边形的内角,解题的关键是观察图形发现∠α是正六边形的一个内角.
7、B
【分析】
①射线有方向性,描述射线时的第1个字母表示它的端点,所以①不对.
②不明确A、B、C是否在同一条直线上.所以错误.
③不知道C是否在线段AB上,错误.
④两点之间线段最短,正确.
【详解】
①射线AB和射线BA的端点不同不是同一条射线.所以错误.
②若AB和BC为不在同一条直线的两条线段,B就不是线段AC的中点.所以错误.
③若C点不在线段AB两点的连线上,那么C点就无法过线段AB.所以错误.
④两点之间线段最短,所以正确.
故选:B.
【点睛】
本题考查了射线、线段中点的含义.解题的关键是根据两点之间线段最短,射线、线段的中点的定义,角平分线的定义对各小题分析判断即可得解.
8、D
【分析】
解两个不等式,再根据“大大小小找不着”可得m的取值范围.
【详解】
解:解不等式得:,
解不等式得:,
∵不等式组无解,
∴,
解得:,
故选:D.
【点睛】
此题主要考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则是解题关键.
9、D
【分析】
根据等式的性质解答.
【详解】
解:A. 若,则,故该项不符合题意;
B. 若,则,故该项不符合题意;
C. 若,则,故该项不符合题意;
D. 若,则(),故该项符合题意;
故选:D.
【点睛】
此题考查了等式的性质:等式两边同时加上或减去同一个整式,等式仍然成立;等式两边同时乘或除以同一个不为0的整式,等式仍然成立.
10、C
【分析】
过点F作MN⊥AD于点M,交BC于点N,证明△AFE∽△CFB,可证得,得MN=4MF,再根据三角形面积公式可得结论.
【详解】
解:过点F作MN⊥AD于点M,交BC于点N,连接BD,
∵四边形ABCD是平行四边形,
∴AD//BC,AD=BC
∴△AFE∽△CFB
∴
∵DE=2AE
∴AD=3AE=BC
∴
∴,即
又
∴
∴
故选:C
【点睛】
本题主要考查了平行四边形的性质,相似三角形的判定与性质,解答此题的关键是能求出两三角形的高的数量关系.
二、填空题
1、y=1
【分析】
根据平行于x轴的直线上所有点纵坐标相等,又直线经过点M(3,1),则该直线上所有点的共同特点是纵坐标都是1.
【详解】
解:∵所求直线经过点M(3,1)且平行于x轴,
∴该直线上所有点纵坐标都是1,
故可以表示为直线y=1.
故答案为:y=1.
【点睛】
此题考查与坐标轴平行的直线的特点:平行于x轴的直线上点的纵坐标相等,平行于y轴的直线上点的横坐标相等.
2、11或12
【分析】
根据每人分5支,那么余7支;如果前面的学生每人分6支,那么最后一名学生能分到笔但分到的少于3支,得出5x+7≥6(x-1)+1,且6(x-1)+3>5x+7,分别求出即可.
【详解】
解:假设共有学生x人,根据题意得出:
,
解得:10<x≤12.
因为x是正整数,所以符合条件的x的值是11或12,
故答案为:11或12.
【点睛】
此题主要考查了一元一次不等式组的应用,根据题意找出不等关系得出不等式组是解决问题的关键.
3、3
【分析】
由题意,先画出几何体的左视图,然后计算面积即可.
【详解】
解:根据题意,该几何体的左视图为:
∴该几何体的左视图的面积为3;
故答案为:3.
【点睛】
本题考查了简单几何体的三视图,解题的关键是正确的画出左视图.
4、
【分析】
根据两个负数比较大小,其绝对值大的反而小比较即可.
【详解】
解:,,
,
,
故答案为:.
【点睛】
本题考查了绝对值和有理数的大小比较,解题的关键是能熟记有理数的大小比较法则的内容,注意:两个负数比较大小,其绝对值大的反而小.
5、
【分析】
根据幂的乘方运算,负整数指数幂,单项式的除法运算,公式法因式分解,提公因式法因式分解分别计算即可
【详解】
解:计算:,,.
分解因式:,,.
故答案为:;;;;;
【点睛】
本题考查了幂的乘方运算,负整数指数幂,单项式的除法运算,公式法因式分解,提公因式法因式分解,掌握以上运算法则和因式分解的方法是解题的关键.
三、解答题
1、
(1),.
(2).
【分析】
(1)按小海所填第一项是计算,先去括号,然后合并同类项化简,代入字母的值,按含乘方的有理数混合运算法则计算即可.
(2)按科代表所填正确的系数计算,设课代表填数的数为m,先去括号,合并同类项得出,根据老师给出的“”这个条件是多余的,可得化简后与x无关,让x的系数为0得出,,解方程得出,在代入字母的值计算即可.
(1)
解:,
=,
=,
当,时,原式=.
(2)
设课代表填数的数为m,
,
=,
=,
∵老师给出的“”这个条件是多余的,
∴化简后与x无关,
∴,
解得.
【点睛】
本题考查整式的加减化简求值,整式的加减中的无关型问题,一元一次方程掌握化简求值的方法与步骤,整式的加减中的无关型问题,一元一次方程是解题关键.
2、
(1)见解析
(2)
【分析】
(1)根据矩形性质先证明四边形CDEF是平行四边形,再根据有一组邻边相等的平行四边形是菱形即可解决问题;
(2)连接GF,根据菱形的性质证明△CDG≌△CFG,然后根据勾股定理即可解决问题.
【小题1】
解:证明:∵四边形ABCD是矩形,
∴AB∥CD,AB=CD,
∵CF∥ED,
∴四边形CDEF是平行四边形,
∵DC=DE.
∴四边形CDEF是菱形;
【小题2】
如图,连接GF,
∵四边形CDEF是菱形,
∴CF=CD=5,
∵BC=3,
∴BF=,
∴AF=AB-BF=5-4=1,
在△CDG和△CFG中,
,
∴△CDG≌△CFG(SAS),
∴FG=GD,
∴FG=GD=AD-AG=3-AG,
在Rt△FGA中,根据勾股定理,得
FG2=AF2+AG2,
∴(3-AG)2=12+AG2,
解得AG=.
【点睛】
本题考查了矩形的性质,菱形的判定与性质,全等三角形的判定与性质,勾股定理,解决本题的关键是掌握菱形的判定与性质.
3、
(1)每件乙种商品的价格为40元,每件甲种商品的价格为48元.
(2)最多可购买50件甲种商品.
【分析】
(1)设每件乙种商品的价格为x元,则每件甲种商品的价格为(x+8)元,根据数量=总价÷单价结合用1200元购买甲种口罩的件数恰好与用1000元购买乙种口罩的件数相同,即可得出关于x的分式方程,解之并检验后即可得出结论;
(2)设购买y件甲种商品,则购买(80-y)件乙种商品,根据总价=单价×购买数量结合投入的经费不超过3600元,即可得出关于y的一元一次不等式,解之即可得出y的取值范围,取其内的最大正整数即可.
(1)
解:设每件乙种商品的价格为x元,则每件甲种商品的价格为(x+8)元,
根据题意得:,
解得:x=40,
经检验,x=40原方程的解,
∴x+8=48.
答:每件乙种商品的价格为40元,每件甲种商品的价格为48元.
(2)
解:设购买y件甲种商品,则购买(80-y)件乙种商品,
根据题意得:48y+40(80-y)≤3600,
解得:y≤50.
答:最多可购买50件甲种商品.
【点睛】
本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据数量=总价÷单价,列出关于x的分式方程;(2)根据总价=单价×购买数量,列出关于y的一元一次不等式.
4、(1)一次函数表达式为,反比例函数表达式为;(2),;(3)或
【分析】
(1)把分别代入一次函数与反比例函数,解出,即可得出答案;
(2)把一次函数和反比例函数联立求解即可求出点B坐标,令代入一次函数解出点C坐标,由即可;
(3)根据相似三角形的判定:两边成比例且夹角相等的两个三角形相似,找出对应边成比例求解即可.
【详解】
(1)把代入一次函数得:,
解得:,
∴一次函数表达式为,
把代入反比例函数得:,即,
∴反比例函数表达式为;
(2),
解得:或,
∴,
令代入得:,
∴,
∴;
(3)
①当时,,
,,,,
∴,即,
解得:,,
∵M在第一象限,
∴,,
∴,
②当时,,
∴,即,
解得:,,
∵M在第一象限,
∴,,
∴,
综上,当与相似时,M点的坐标为或.
【点睛】
本题考查反比例函数综合以及相似三角形的判定与性质,掌握相关知识点的应用是解题的关键.
5、见解析
【分析】
在AC上截取CF=CD,由角平分线的性质和三角形内角和定理可求∠AOC=120°,∠DOC=∠AOE=60°,由“SAS”可证△CDO≌△CFO,可得∠COF=∠COD=60°,由“ASA”可证△AOF≌△AOE,可得AE=AF,即可得结论.
【详解】
解:证明:如图,在AC上截取CF=CD,
∵∠B=60°,
∴∠BAC+∠BCA=120°,
∵∠BAC、∠BCA的角平分线AD、CE相交于O,
∴∠BAD=∠OAC=∠BAC,∠DCE=∠OCA=∠BCA,
∴∠OAC+∠OCA=(∠BAC+∠BCA)=60°,
∴∠AOC=120°,∠DOC=∠AOE=60°,
∵CD=CF,∠OCA=∠DCO,CO=CO,
∴△CDO≌△CFO(SAS),
∴∠COF=∠COD=60°,
∴∠AOF=∠EOA=60°,且AO=AO,∠BAD=∠DAC,
∴△AOF≌△AOE(ASA),
∴AE=AF,
∴AC=AF+FC=AE+CD.
【点睛】
本题考查了全等三角形的判定与性质,添加恰当辅助线构造全等三角形是本题的关键.
【高频真题解析】2022年河北省中考数学模拟真题测评 A卷(精选): 这是一份【高频真题解析】2022年河北省中考数学模拟真题测评 A卷(精选),共25页。试卷主要包含了方程的解为,把分式化简的正确结果为,一元二次方程的一次项的系数是等内容,欢迎下载使用。
【高频真题解析】2022年最新中考数学模拟真题测评 A卷(精选): 这是一份【高频真题解析】2022年最新中考数学模拟真题测评 A卷(精选),共21页。试卷主要包含了下列各式,下列说法正确的是.,不等式+1<的负整数解有,计算12a2b4•÷的结果等于,分式方程有增根,则m为等内容,欢迎下载使用。
【难点解析】2022年北京市昌平区中考数学模拟真题测评 A卷(精选): 这是一份【难点解析】2022年北京市昌平区中考数学模拟真题测评 A卷(精选),共34页。试卷主要包含了下列说法中,正确的有等内容,欢迎下载使用。