高考数学(理数)二轮复习课时跟踪检测25《函数与导数》大题练(学生版)
展开1.已知函数f(x)=(x-1)ex+1,g(x)=ex+ax-1(其中a∈R,e为自然对数的底数,e=2.718 28…).
(1)求证:函数f(x)有唯一零点;
(2)若曲线g(x)=ex+ax-1的一条切线方程是y=2x,求实数a的值.
2.已知函数f(x)=ln x-a(x+1),a∈R的图象在(1,f(1))处的切线与x轴平行.
(1)求f(x)的单调区间;
(2)若存在x0>1,当x∈(1,x0)时,恒有f(x)-eq \f(x2,2)+2x+eq \f(1,2)>k(x-1)成立,求k的取值范围.
3.已知函数f(x)=ln x+eq \f(2a,x+1)(a∈R).
(1)求函数f(x)的单调区间;
(2)当a=1时,求证:f(x)≤eq \f(x+1,2).
4.已知函数f(x)=(2+x+ax2)·ln(1+x)-2x.
(1)若a=0,证明:当-1
(2)若x=0是f(x)的极大值点,求a.
B卷——深化提能练
1.已知函数f(x)=ln x+eq \f(t,x)-s(s,t∈R).
(1)讨论f(x)的单调性及最值;
(2)当t=2时,若函数f(x)恰有两个零点x1,x2(0
2.已知函数f(x)=ax-ln x,F(x)=ex+ax,其中x>0,a<0.
(1)若f(x)和F(x)在区间(0,ln 3)上具有相同的单调性,求实数a的取值范围;
(2)若a∈eq \b\lc\(\rc\](\a\vs4\al\c1(-∞,-\f(1,e2))),且函数g(x)=xeax-1-2ax+f(x)的最小值为M,求M的最小值.
3.已知函数f(x)=kx-ln x-1(k>0).
(1)若函数f(x)有且只有一个零点,求实数k的值;
(2)证明:当n∈N*时,1+eq \f(1,2)+eq \f(1,3)+…+eq \f(1,n)>ln(n+1).
4.已知函数f(x)=eq \f(ln x,x+a)(a∈R),曲线y=f(x)在点(1,f(x))处的切线与直线x+y+1=0垂直.
(1)试比较2 0172 018与2 0182 017的大小,并说明理由;
(2)若函数g(x)=f(x)-k有两个不同的零点x1,x2,证明:x1x2>e2.
高考数学二轮复习课时跟踪检测25函数与导数大题练(含答案): 这是一份高考数学二轮复习课时跟踪检测25函数与导数大题练(含答案),共8页。试卷主要包含了已知函数f=·ln-2x.等内容,欢迎下载使用。
高考数学(理数)二轮复习课时跟踪检测25《函数与导数》大题练(教师版): 这是一份高考数学(理数)二轮复习课时跟踪检测25《函数与导数》大题练(教师版),共8页。试卷主要包含了已知函数f=·ln-2x.等内容,欢迎下载使用。
高考数学(理数)二轮复习课时跟踪检测24《导数的简单应用》小题练(学生版): 这是一份高考数学(理数)二轮复习课时跟踪检测24《导数的简单应用》小题练(学生版),共3页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。