[中考专题]2022年广东省梅州市中考数学第二次模拟试题(含答案解析)
展开2022年广东省梅州市中考数学第二次模拟试题
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,与位似,点O是位似中心,若,,则( )
A.9 B.12 C.16 D.36
2、如图,有一条直的宽纸带,按图折叠,则∠α的度数等于( )
A.50° B.65° C.75° D.80°
3、下列说法中不正确的是( )
A.平面内,垂直于同一条直线的两直线平行
B.过一点有且只有一条直线与已知直线平行
C.平面内,过一点有且只有一条直线与已知直线垂直
D.直线外一点到这条直线的垂线段的长度,叫做这个点到直线的距离
4、如图,点在直线上,平分,,,则( )
A.10° B.20° C.30° D.40°
5、已知点与点关于y轴对称,则的值为( )
A.5 B. C. D.
6、已知二次函数,则关于该函数的下列说法正确的是( )
A.该函数图象与轴的交点坐标是
B.当时,的值随值的增大而减小
C.当取1和3时,所得到的的值相同
D.将的图象先向左平移两个单位,再向上平移5个单位得到该函数图象
7、某优秀毕业生向我校赠送1080本课外书,现用A、B两种不同型号的纸箱包装运送,单独使用B型纸箱比单独使用A型纸箱可少用6个;已知每个B型纸箱比每个A型纸箱可多装15本.若设每个A型纸箱可以装书x本,则根据题意列得方程为( )
A. B.
C. D.
8、若抛物线的顶点坐标为(1,-4),则抛物线与轴的交点个数为( )
A.0个 B.1个 C.2个 D.无法确定
9、如图,点是以点为圆心,为直径的半圆上的动点(点不与点,重合),.设弦的长为,的面积为,则下列图象中,能表示与的函数关系的图象大致是( )
A. B. C. D.
10、下列式子运算结果为2a的是( ).
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,OA1B1,A1A2B2,A2A3B3,⋯是分别以A1,A2,A3,…,为直角顶点且一条直角边在x轴正半轴上的等腰直角三角形,其斜边中点C1(x1,y1),C2(x2,y2),C3(x3,y3),…,均在反比例函数的图象上,则C1的坐标是_;y1+y2+y3+…+y2022的值为___.
2、已知n<5,且关于x的方程x2﹣2x﹣2n=0两根都是整数,则n=___.
3、如图,在一条可以折叠的数轴上,A、B两点表示的数分别是,3,以点C为折点,将此数轴向右对折,若点A折叠后在点B的右边,且,则C点表示的数是______.
4、如果点A(﹣1,3)、B(5,n)在同一个正比例函数的图像上,那么n=___.
5、如图是某个几何体的表面展开图,若围成几何体后,与点E重合的两个点是______.
三、解答题(5小题,每小题10分,共计50分)
1、作图题:(尺规作图,保留作图痕迹)已知:线段a、b,求作:线段,使.
2、如图,在中,,D是延长线上的一点,E是上的一点.连接.如果.求证:.
3、(1).
(2).
4、如图,在四边形ABCD中,对角线BD平分∠ABC,∠A=120°,∠C=60°,AB=17,AD=12.
(1)求证:AD=DC;
(2)求四边形ABCD的周长.
5、如图在中,,过点A作的垂线.垂足为D,E为线段上一动点(不与点C,点D重合),连接.以点A为中心,将线段逆时针旋转得到线段,连接,与线段交于点G.
(1)求证:;
(2)用等式表示线段与的数量关系,并证明.
-参考答案-
一、单选题
1、D
【分析】
根据位似变换的性质得到,得到,求出,根据相似三角形的面积比等于相似比的平方计算即可.
【详解】
解:与位似,
,
,
,
,
,
,
故选:D.
【点睛】
本题考查的是位似变换的概念和性质、相似三角形的性质,解题的关键是掌握相似三角形的面积比等于相似比的平方.
2、B
【分析】
根据题意得:BG∥AF,可得∠FAE=∠BED=50°,再根据折叠的性质,即可求解.
【详解】
解:如图,
根据题意得:BG∥AF,
∴∠FAE=∠BED=50°,
∵AG为折痕,
∴ .
故选:B
【点睛】
本题主要考查了图形的折叠,平行线的性质,熟练掌握两直线平行,同位角相等;图形折叠前后对应角相等是解题的关键.
3、B
【分析】
根据点到直线的距离、垂直的性质及平行线的判定等知识即可判断.
【详解】
A、平面内,垂直于同一条直线的两直线平行,故说法正确;
B.过直线外一点有且只有一条直线与已知直线平行,故说法错误;
C.平面内,过一点有且只有一条直线与已知直线垂直,此说法正确;
D.直线外一点到这条直线的垂线段的长度,叫做这个点到直线的距离,这是点到直线的距离的定义,故此说法正确.
故选:B
【点睛】
本题主要考查了垂直的性质、点到直线的距离、平行线的判定等知识,理解这些知识是关键.但要注意:平面内,垂直于同一条直线的两直线平行;平面内,过一点有且只有一条直线与已知直线垂直;这两个性质的前提是平面内,否则不成立.
4、A
【分析】
设∠BOD=x,分别表示出∠COD,∠COE,根据∠EOD=50°得出方程,解之即可.
【详解】
解:设∠BOD=x,
∵OD平分∠COB,
∴∠BOD=∠COD=x,
∴∠AOC=180°-2x,
∵∠AOE=3∠EOC,
∴∠EOC=∠AOC==,
∵∠EOD=50°,
∴,
解得:x=10,
故选A.
【点睛】
本题考查角平分线的意义,通过图形表示出各个角,是正确计算的前提.
5、A
【分析】
点坐标关于轴对称,横坐标互为相反数,纵坐标相等,可求得的值,进而可求的值.
【详解】
解:由题意知:
解得
∴
故选A.
【点睛】
本题考查了关于轴对称的点坐标的关系,代数式求值等知识.解题的关键在于理解关于轴对称的点坐标,横坐标互为相反数,纵坐标相等.
6、C
【分析】
把,代入,即可判断A,由二次函数的图象开口向上,对称轴是直线,即可判断B,当取和,代入,即可判断C,根据函数图象的平移规律,即可判断D.
【详解】
∵二次函数的图象与轴的交点坐标是,
∴A选项错误;
∵二次函数的图象开口向上,对称轴是直线,
∴当时,的值随值的增大而增大,
∴B选项错误;
∵当取和时,所得到的的值都是11,
∴C选项正确;
∵将的图象先向左平移两个单位,再向上平移个单位得到的图象,
∴D选项错误.
故选:C.
【点睛】
本题主要考查二次函数的图象和性质,理解二次函数的性质是解题的关键.
7、C
【分析】
由每个B型包装箱比每个A型包装箱可多装15本课外书可得出每个B型包装箱可以装书(x+15)本,利用数量=总数÷每个包装箱可以装书数量,即可得出关于x的分式方程,此题得解.
【详解】
解:∵每个A型包装箱可以装书x本,每个B型包装箱比每个A型包装箱可多装15本课外书,
∴每个B型包装箱可以装书(x+15)本.
依题意得:
故选:C.
【点睛】
本题考查了由实际问题抽象出分式方程,找准等量关系,解题的关键是正确列出分式方程.
8、C
【分析】
根据顶点坐标求出b=-2a,把b=-2a,(1,-4)代入得,再计算出即可得到结论
【详解】
解:∵抛物线的顶点坐标为(1,-4),
∴
∴
∴
把(1,-4)代入,得,
∴
∴
∴
∴抛物线与轴有两个交点
故选:C
【点睛】
本题主要考查了抛物线与x轴交点个数的确定,抛物线与x轴交点个数是由判别式确定:时,抛物线与x轴有2个交点;时,抛物线与x轴有1个交点;时,抛物线与x轴没有交点
9、B
【分析】
由AB为圆的直径,得到∠C=90°,在Rt△ABC中,由勾股定理得到,进而列出△ABC面积的表达式即可求解.
【详解】
解:∵AB为圆的直径,
∴∠C=90°,
,,由勾股定理可知:
∴,
∴
此函数不是二次函数,也不是一次函数,
排除选项A和选项C,
为定值,当时,面积最大,
此时,
即时,最大,故排除,选.
故选:.
【点睛】
本题考查了动点问题的函数图象,根据题意列出函数表达式是解决问题的关键.
10、C
【分析】
由同底数幂的乘法可判断A,由合并同类项可判断B,C,由同底数幂的除法可判断D,从而可得答案.
【详解】
解:故A不符合题意;
不能合并,故B不符合题意;
故C符合题意;
故D不符合题意;
故选C
【点睛】
本题考查的是同底数幂的乘法,合并同类项,同底数幂的除法,掌握“幂的运算与合并同类项”是解本题的关键.
二、填空题
1、
【分析】
过、、…分别作x轴的垂线,垂足分别为、、…,故是等腰直角三角形,从而求出的坐标;由点是等腰直角三角形的斜边中点,可以得到的长,然后再设未知数,表示点的坐标,确定,代入反比例函数的关系式,建立方程解出未知数,表示点的坐标,确定,……然后再求和.
【详解】
过、、…分别作x轴的垂线,垂足分别为、、…,
则,
∵是等腰直角三角形,
∴,
∴,
∴,
其斜边的中点在反比例函数,
∴,即,
∴,
∴,
设,则,此时,代入得:,
解得:,即:,
同理:,
,
……,
∴
故答案为:,.
【点睛】
本题考查反比例函数的图象和性质、反比例函数图象上点的坐标特征、等腰直角三角形的性质等知识,掌握相关知识点之间的应用是解题的关键.
2、或或或
【分析】
先利用方程有两根求解结合已知条件可得再求解方程两根为结合两根为整数,可得为完全平方数,从而可得答案.
【详解】
解:关于x的方程x2﹣2x﹣2n=0有两根,
x2﹣2x﹣2n=0,
而两个根为整数,则为完全平方数,
或或或
解得:或或或
故答案为:或或或
【点睛】
本题考查的是一元二次方程根的判别式,利用公式法解一元二次方程,熟练的解一元二次方程是解本题的关键.
3、
【分析】
根据A与B表示的数求出AB的长,再由折叠后AB的长,求出BC的长,即可确定出C表示的数.
【详解】
解:∵A,B表示的数为-7,3,
∴AB=3-(-7)=4+7=10,
∵折叠后AB=2,
∴BC==4,
∵点C在B的左侧,
∴C点表示的数为3-4=-1.
故答案为:-1.
【点睛】
本题考查了数轴,折叠的性质,熟练掌握各自的性质是解本题的关键.
4、
【分析】
设过的正比例函数为: 求解的值及函数解析式,再把代入函数解析式即可.
【详解】
解:设过的正比例函数为:
解得:
所以正比例函数为:
当时,
故答案为:
【点睛】
本题考查的是利用待定系数法求解正比例函数的解析式,正比例函数的性质,熟练的利用待定系数法列方程是解本题的关键.
5、A和C
【分析】
根据题意可知该几何体的展开图是四棱锥的平面展开图,找出重合的棱,即可找到与点E重合的两个点.
【详解】
折叠之后CD和DE重合为一条棱,C点和E点重合;AH和EF重合为一条棱,A点和E点重合.
所以与点E重合的两个点是A点和C点.
故答案为:A和C.
【点睛】
此题考查的是四棱锥的展开图,解决此题的关键是运用空间想象能力把展开图折成四棱锥,找到重合的点.
三、解答题
1、线段AB为所作,图形见详解.
【分析】
先作射线AN,再截取DA=a,DC=CB=b,则线段AB满足条件.
【详解】
解:如图, 作射线AN,在射线AN上截取AD=a
在线段DA上顺次截取DC=CB=b,
∴AB=AD-BC-CD=a-b-b=a-2b
线段AB为所作.
【点睛】
本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
2、见解析
【分析】
由垂直可得,根据相似三角形的判定定理直接证明即可.
【详解】
证明:∵,
∴,
在和中,
∵,
∴.
【点睛】
题目主要考查相似三角形的判定定理,熟练掌握相似三角形的判定是解题关键.
3、(1)2xz;(2)ab+1
【分析】
(1)先计算积的乘方,后自左到右依次计算即可,
(2)先计算括号里的,最后计算除法.
【详解】
解:(1)原式
=2xz;
(2)原式=
=
=ab+1.
【点睛】
本题考查了整式的混合运算,熟练掌握运算的顺序,运算公式和运算法则是解题的关键.
4、
(1)证明见解析;
(2)70.
【分析】
(1)在BC上取一点E,使BE=AB,连接DE,证得△ABD≌△EBD,进一步得出∠BED=∠A,利用等腰三角形的判定与性质与等量代换解决问题;
(2)首先判定△DEC为等边三角形,求得BC,进一步结合(1)的结论解决问题.
(1)
证明:在BC上取一点E,使BE=AB,连结DE.
∵BD平分∠ABC,
∴∠ABD=∠CBD.
在△ABD和△EBD中,
,
∴△ABD≌△EBD(SAS);
∴DE=AD=12,∠BED=∠A,AB=BE=17.
∵∠A=120°,
∴∠DEC=60°.
∵∠C=60°,
∴∠DEC=∠C,
∴DE=DC,
∴AD=DC.
(2)
∵∠C=60°,DE=DC,
∴△DEC为等边三角形,
∴EC=CD=AD.
∵AD=12,
∴EC=CD=12,
∴四边形ABCD的周长=17+17+12+12+12=70.
【点睛】
此题考查全等三角形的判定与性质,等腰三角形和等边三角形的判定与性质,结合图形,灵活解答.
5、
(1)见解析
(2)线段与的数量关系是.证明见解析
【分析】
(1)由题意知,故.
(2)过点A作的垂线,可证得,由全等三角形性质知,由相似三角形的性质即可推导得.
(1)
∵,
∴,
∵,
∴,
∴
(2)
连接.
在和中,
∴,
∴,
∵,
∴,
∴,
∴,
∵,
∴
∵,
∴
【点睛】
本题考查了全等三角形的判定及性质,等腰三角形的性质,由相似的性质得另外两边与中位线的交点为中点.
广东省梅州市名校2022年中考数学模拟试题含解析: 这是一份广东省梅州市名校2022年中考数学模拟试题含解析,共19页。试卷主要包含了点A等内容,欢迎下载使用。
2022年广东省梅州市中考数学模拟试卷(一)(含解析): 这是一份2022年广东省梅州市中考数学模拟试卷(一)(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022年广东省梅州市中考数学模拟试题(一)(word版含答案): 这是一份2022年广东省梅州市中考数学模拟试题(一)(word版含答案),共9页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。