【高频真题解析】2022年广东省广州市中考数学真题模拟测评 (A)卷(含答案详解)
展开2022年广东省广州市中考数学真题模拟测评 (A)卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、点P到x轴的距离是3,到y轴的距离是2,且点P在y轴的左侧,则点P的坐标是( )
A.(-2,3)或(-2,-3) B.(-2,3)
C.(-3,2)或(-3,-2) D.(-3,2)
2、观察下列图形:它们都是由同样大小的圆圈按一定的规律组成,其中第1个图形有5个圆圈,第2个图形有9个圆圈,第3个图形有13个圆圈,……,按此规律,第7个图形中圆圈的个数为( )
A.21 B.25 C.28 D.29
3、下列命题错误的是( )
A.所有的实数都可用数轴上的点表示 B.两点之间,线段最短
C.无理数包括正无理数、0、负有理数 D.等角的补角相等
4、工人常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使CM=CN,过角尺顶点C作射线OC,由此作法便可得△NOC≌△MOC,其依据是( )
A.SSS B.SAS C.ASA D.AAS
5、已知线段AB、CD,AB<CD,如果将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,这时点B的位置必定是( )
A.点B在线段CD上(C、D之间)
B.点B与点D重合
C.点B在线段CD的延长线上
D.点B在线段DC的延长线上
6、如图,在矩形ABCD中,AB=2,BC=4,对角线AC,BD相交于点O,OE⊥AC交BC于点E,EF⊥BD于点F,则OE+EF的值为( )
A. B.2 C. D.2
7、下列说法正确的是( )
A.的系数是 B.的次数是5次
C.的常数项为4 D.是三次三项式
8、下列计算正确的是( )
A. B. C. D.
9、如图,点P是▱ABCD边AD上的一点,E,F分别是BP,CP的中点,已知▱ABCD面积为16,那么△PEF的面积为( )
A.8 B.6 C.4 D.2
10、下列二次根式的运算正确的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在实数①,②π,③2.131131113,④,⑤0,⑥中,无理数是_____(填序号).
2、一元二次方程的一次项系数是______.
3、数轴上表示数和的两点之间的距离为______.
4、若则______.
5、如图,点A在第二象限内,AC⊥OB于点C,B(-6,0),OA=4,∠AOB=60°,则△AOC的面积是______.
三、解答题(5小题,每小题10分,共计50分)
1、 “互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条60元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售10条.设每条裤子的售价为x元(x为正整数),每月的销售量为y条.
(1)直接写出y与x的函数关系式;
(2)设该网店每月获得的利润为w元,当销售单价为多少元时,每月获得的利润最大,最大利润是多少?
(3)该网店店主热心公益事业,决定每月从利润中捐出500元资助贫困学生.为了保证捐款后每月利润不低于1590元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?
2、上海迪士尼乐园调查了部分游客前往乐园的交通方式,并绘制了如下统计图.已知选择“自驾”方式的人数是调查总人数的,选择“其它”方式的人数是选择“自驾”人数的,根据图中提供的信息,回答下列问题:
(1)本次调查的总人数是多少人?
(2)选择“公交”方式的人数占调查总人数的几分之几?
3、如图,正三角形ABC内接于,的半径为r,求这个正三角形的周长和面积.
4、计算:
(1);
(2)
5、本学期学习了轴对称、轴对称图形如角、等腰三角形、正方形、圆等图形;在代数中如,,,…任意交换两个字母的位置,式子的值都不变,这样的式子我们称为对称式.含有两个字母a,b的对称式的基本对称式是和,像,等对称式都可以用和表示,例如:.请根据上述材料解决下列问题:
(1)式子①,②,③,④.中,属于对称式的是 (填序号).
(2)已知.
①m= ,n= (用含a,b的代数式表示);
②若,,求对称式的值;
③若,请求出对称式的最小值.
-参考答案-
一、单选题
1、A
【分析】
根据点P到坐标轴的距离以及点P在平面直角坐标系中的位置求解即可.
【详解】
解:∵点P在y轴左侧,
∴点P在第二象限或第三象限,
∵点P到x轴的距离是3,到y轴距离是2,
∴点P的坐标是(-2,3)或(-2,-3),
故选:A.
【点睛】
此题考查了平面直角坐标系中点的坐标表示,点到坐标轴的距离,解题的关键是熟练掌握平面直角坐标系中点的坐标表示,点到坐标轴的距离.
2、D
【分析】
根据已知图形得出第n个图形中圆圈数量为1+4×n=4n+1,再将n=7代入即可得.
【详解】
解:∵第1个图形中圆圈数量5=1+4×1,
第2个图形中圆圈数量9=1+4×2,
第3个图形中圆圈数量13=1+4×3,
……
∴第n个图形中圆圈数量为1+4×n=4n+1,
当n=7时,圆圈的数量为29,
故选:D.
【点睛】
本题考查规律型-图形变化类问题,解题的关键是学会从特殊到一般的探究方法,学会利用规律解决问题.
3、C
【分析】
根据实数与数轴的关系,线段的基本事实,无理数的分类,补角的性质,逐项判断即可求解.
【详解】
解:A、所有的实数都可用数轴上的点表示,该命题正确,故本选项不符合题意;
B、两点之间,线段最短,该命题正确,故本选项不符合题意;
C、0不是无理数,该命题错误,故本选项符合题意;
D、等角的补角相等,该命题正确,故本选项不符合题意;
故选:C
【点睛】
本题主要考查了实数与数轴的关系,线段的基本事实,无理数的分类,补角的性质,命题的真假判断,熟练掌握实数与数轴的关系,线段的基本事实,无理数的分类,补角的性质是解题的关键.
4、A
【分析】
利用边边边,可得△NOC≌△MOC,即可求解.
【详解】
解:∵OM=ON,CM=CN, ,
∴△NOC≌△MOC(SSS).
故选:A
【点睛】
本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法——边角边、角边角、角角边、边边边是解题的关键.
5、A
【分析】
根据叠合法比较大小的方法始点重合,看终点可得点B在线段CD上,可判断A,点B与点D重合,可得线段AB=CD,可判断B,利用AB>CD,点B在线段CD的延长线上,可判断C, 点B在线段DC的延长线上,没有将AB移动到CD的位置,无法比较大小可判断D.
【详解】
解:将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,如图,
点B在线段CD上(C、D之间),故选项A正确,
点B与点D重合,则有AB=CD与AB<CD不符合,故选项B不正确;
点B在线段CD的延长线上,则有AB>CD,与AB<CD不符合,故选项C不正确;
点B在线段DC的延长线上,没有将AB移动到CD的位置,故选项D不正确.
故选:A.
【点睛】
本题考查线段的比较大小的方法,掌握叠合法比较线段大小的方法与步骤是解题关键.
6、A
【分析】
依据矩形的性质即可得到的面积为2,再根据,即可得到的值.
【详解】
解:,,
矩形的面积为8,,
,
对角线,交于点,
的面积为2,
,,
,即,
,
,
,
故选:A.
【点睛】
本题主要考查了矩形的性质,解题的关键是掌握矩形的四个角都是直角,矩形的对角线相等且互相平分.
7、A
【分析】
根据单项式的系数、次数的定义以及多项式次数、项数、常数项的定义可解决此题.
【详解】
解:A、的系数是,故选项正确;
B、的次数是3次,故选项错误;
C、的常数项为-4,故选项错误;
D、是二次三项式,故选项错误;
故选A.
【点睛】
本题主要考查单项式的系数、次数的定义以及多项式次数、项数、常数项的定义,熟练掌握单项式的系数、次数的定义以及多项式次数、项数、常数项的定义是解决本题的关键.
8、D
【分析】
先确定各项是否为同类项(所含字母相同,相同字母指数也相同的项),如为同类项根据合并同类项法则(只把系数相加减,字母和字母的指数不变)合并同类项即可.
【详解】
A. ,故A选项错误;
B. ,不是同类项,不能合并,故错误;
C. ,故C选项错误;
D. ,故D选项正确.
故选:D.
【点睛】
本题考查合并同类项,合并同类项时先确定是否为同类项,如是同类项再根据字母和字母的指数不变,系数相加合并同类项.
9、D
【分析】
根据平行线间的距离处处相等,得到,根据EF是△PBC的中位线,得到△PEF∽△PBC,EF=,得到计算即可.
【详解】
∵点P是▱ABCD边AD上的一点,且 ▱ABCD面积为16,
∴;
∵E,F分别是BP,CP的中点,
∴EF∥BC,EF=,
∴△PEF∽△PBC,
∴,
∴,
故选D.
【点睛】
本题考查了平行四边形的性质,三角形中位线定理,三角形相似的判定和性质,熟练掌握中位线定理,灵活运用三角形相似的性质是解题的关键.
10、B
【分析】
根据二次根式的性质及运算逐项进行判断即可.
【详解】
A、,故运算错误;
B、,故运算正确;
C、,故运算错误;
D、,故运算错误.
故选:B
【点睛】
本题考查了二次根式的性质、二次根式的运算,掌握二次根式的性质及运算法则是关键.
二、填空题
1、②④
【分析】
根据无理数是无限不循环小数进行判断即可.
【详解】
解:①﹣是分数,属于有理数;
②π是无理数;
③2.131131113是有限小数,属于有理数;
④是无理数;
⑤0是整数,属于有理数;
⑥=﹣2是有理数;
故答案为:②④.
【点睛】
本题考查了有理数与无理数的定义与分类.解题的关键在于正确理解有理数与无理数的定义与分类.
2、-5
【分析】
化为一般式解答即可.
【详解】
解:∵,
∴,
∴一次项系数是-5,
故答案为:-5.
【点睛】
此题考查了一元二次方程的一般形式,一元二次方程的一般形式为ax2+bx+c=0(a≠0).其中a是二次项系数,b是一次项系数,c是常数项.
3、##
【分析】
根据数轴上两点间的距离,可得﹣(﹣5)再计算,即可求解.
【详解】
解:﹣(﹣5)
=+5
=.
故答案为:
【点睛】
本题主要考查了数轴上两点间的距离,二次根式的减法运算,熟练掌握数轴上两点间的距离,二次根式的减法运算法则是解题的关键.
4、
【分析】
用含b的式子表示a,再把合分比式中a换成含b的式子约分即可.
【详解】
解:∵,
∴,
∴.
故答案为.
【点睛】
本题考查合分比性质问题,关键掌握比例的性质,会利用性质把比例式进行恒等变形,会根据需要选择灵活的比例式解决问题.
5、
【分析】
利用直角三角形的性质和勾股定理求出OC和AC的长,再运用三角形面积公式求出即可.
【详解】
解:∵AC⊥OB,
∴
∵∠AOB=60°,
∴
∵OA=4,
∴
在Rt△ACO中,
∴
故答案为:
【点睛】
本题主要考查了坐标与图形的性质,直角三角形的性质,勾股定理以及三角形的面积等知识,求出OC和AC的长是解答本题的关键.
三、解答题
1、
(1)
(2)当销售价格为75元时,每月获得利润最大为2250元
(3)确定休闲裤的销售单价为71元
【分析】
(1)根据题意写出销售量与售价的函数关系即可;
(2)根据销售量乘以每件的销售利润即可求得销售利润,据此列出二次函数关系式,并根据二次函数的性质求得最大值;
(3)根据二次函数的性质求得销售单价
(1)
(2)
∵抛物线开口向下∴当时,元
答:当销售价格为75元时,每月获得利润最大为2250元
(3)
由题意得:
解得:为了让消费者得到最大的实惠,故
【点睛】
本题考查了一次函数与二次函数的应用,掌握二次函数的性质是解题的关键.
2、
(1)120;
(2)
【分析】
(1)用自驾的人数除以所占百分数计算即可;
(2)先计算出乘公交的人数=总人数-自驾人数-其它人数,后计算即可.
(1)
∵ “自驾”方式的人数是32人,且是调查总人数的,
∴总人数为:32÷=120(人).
(2)
∵选择“其它”方式的人数是选择“自驾”人数的,“自驾”方式的人数是32人,
∴选择“其它”方式的人数是32×=20(人)
∴选择公交的人数是:120-32-20=68(人),
∴选择“公交”方式的人数占调查总人数的.
【点睛】
本题考查了条形统计图,样本估计整体,正确获取解题信息是解题的关键.
3、周长为.面积为.
【分析】
连接OB,OA,延长AO交BC于D,根据等边三角形性质得出AD⊥BC,BD=CD=BC,∠OBD=30°,求出OD,根据勾股定理求出BD,即可求出BC,BC的三倍即为周长,根据三角形的面积公式即可求出面积.
【详解】
解:连接OB,OA,延长AO交BC于D,如图所示:
∵正△ABC外接圆是⊙O,
∴AD⊥BC,BD=CD=BC,∠OBD=∠ABC=×60°=30°,
∴OD=OB=r,
由勾股定理得:BD=,
即三角形边长为BC=2BD=r,AD=AO+OD=r+r=,
则△ABC的周长=3BC=3×r=3r;
△ABC的面积=BC×AD=×r×=.
∴正三角形ABC周长为;正三角形ABC面积为.
【点睛】
本题考查了等边三角形、等腰三角形的性质、勾股定理、三角形的外接圆、三角形的面积等知识点;关键是能正确作辅助线后求出BD的长.
4、
(1)-8
(2)5
【分析】
(1)先计算乘法,再计算加减法;
(2)先计算乘方及乘法,再计算除法,最后计算加减法.
(1)
解:原式
.
(2)
解:原式
=-1+6
.
【点睛】
此题考查了有理数的混合运算及含乘方的有理数的混合运算,正确掌握运算顺序及运算法则是解题的关键.
5、
(1)③④
(2)①,;②;③
【分析】
(1)根据对称式的定义,逐一判断即可求解;
(2)①根据,即可求解;
②把化为 ,再代入,即可求解;
③根据,可得,再将原式化为,代入即可求解.
(1)
解:①,不是对称式,
②,不是对称式,
③,是对称式,
④,是对称式,
∴属于对称式的是③④
(2)
①∵,
∴,;
②∵,,
∴,,
∴;
③∵,
∴,
∵
∴
,
∵,
∴,
∴的最小值为.
【点睛】
本题主要考查了分式混合运算的应用,二次根式的混合运算,完全平方公式的应用,平方的非负性,理解新定义是解题的关键.
【高频真题解析】2022年中考数学真题模拟测评 (A)卷(含答案详解): 这是一份【高频真题解析】2022年中考数学真题模拟测评 (A)卷(含答案详解),共22页。试卷主要包含了计算3.14-的结果为 .,不等式+1<的负整数解有,下列分式中,最简分式是,下列解方程的变形过程正确的是,下列等式成立的是等内容,欢迎下载使用。
【历年真题】:中考数学真题模拟测评 (A)卷(含答案详解): 这是一份【历年真题】:中考数学真题模拟测评 (A)卷(含答案详解),共23页。试卷主要包含了在数2,-2,,中,最小的数为,若,则值为,观察下列图形,一组样本数据为1等内容,欢迎下载使用。
【高频真题解析】2022年最新中考数学真题模拟测评 (A)卷(含详解): 这是一份【高频真题解析】2022年最新中考数学真题模拟测评 (A)卷(含详解),共28页。试卷主要包含了若,则的值为,下列关于整式的说法错误的是,下列说法正确的是,正八边形每个内角度数为,下列计算正确的是等内容,欢迎下载使用。