【高频真题解析】2022年北京市中考数学备考模拟练习 (B)卷(含答案解析)
展开
这是一份【高频真题解析】2022年北京市中考数学备考模拟练习 (B)卷(含答案解析),共18页。试卷主要包含了如图所示,由A到B有①等内容,欢迎下载使用。
2022年北京市中考数学备考模拟练习 (B)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、有下列说法:①两条不相交的直线叫平行线;②同一平面内,过一点有且只有一条直线与已知直线垂直;③两条直线相交所成的四个角中,如果有两个角相等,那么这两条直线互相垂直;④有公共顶点的两个角是对顶角.其中说法正确的个数是( )A.1 B.2 C.3 D.42、在平面直角坐标系xOy中,点A(2,1)与点B(0,1)关于某条直线成轴对称,这条直线是( )A.轴 B.轴C.直线(直线上各点横坐标均为1) D.直线(直线上各点纵坐标均为1)3、如图,已知AD∥BC,欲用“边角边”证明△ABC≌△CDA,需补充条件( )A.AB = CD B.∠B = ∠D C.AD = CB D.∠BAC = ∠DCA4、若菱形的周长为8,高为2,则菱形的面积为( )A.2 B.4 C.8 D.165、一列火车匀速行驶,经过一条长400米的隧道需要30秒的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10秒,则火车的长为( )A. B.133 C.200 D.4006、若x=1是关于x的一元二次方程x2+mx﹣3=0的一个根,则m的值是( )A.﹣2 B.﹣1 C.1 D.27、下列一元二次方程有两个相等的实数根的是( )A. B. C. D. 8、如图所示,由A到B有①、②、③三条路线,最短的路线选①的理由是( )A.两点确定一条直线 B.经过一点有无数条直线C.两点之间,线段最短 D.一条线段等于已知线段9、如图,在平行四边形ABCD中,E是AD上一点,且DE=2AE,连接BE交AC于点F,已知S△AFE=1,则S△ABD的值是( )A.9 B.10 C.12 D.1410、已知圆O的半径为3,AB、AC是圆O的两条弦,AB=3,AC=3,则∠BAC的度数是( )A.75°或105° B.15°或105° C.15°或75° D.30°或90°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知△ABC与△ADE均是等腰直角三角形,∠BAC=∠ADE=90°,AB=AC=1,AD=DE=,点D在直线BC上,EA的延长线交直线BC于点F,则FB的长是 _____.2、已知关于x,y的二元一次方程组的解x,y互为相反数,则a的值为______.3、计算:=___;4、如图,点C是线段AB的中点,点D在线段AB上,且AD=AB,DC=2cm,那么线段AB的长为________cm.5、最新人口普查数据显示上海的常住人数约为24870000人,将24870000用科学记数法表示是:_______.三、解答题(5小题,每小题10分,共计50分)1、计算:(1)(2)2、解方程组: .3、如图,在△ABC中,已知D是BC边的中点,过点D的直线GF交AC于F,交AC的平行线BG于点G,DE⊥GF,交AC的延长线于点E,联结EG.(1)说明BG与CF相等的理由.(2)说明∠BGD与∠DGE相等的理由.4、某商店以每盏25元的价格采购了一批节能灯,运输过程中损坏了3盏,然后以每盏30元售完,共获利160元.该商店共购进了多少盏节能灯?5、计算: -参考答案-一、单选题1、A【分析】根据平行线的定义、垂直的定义及垂线的唯一性、对顶角的含义即可判断.【详解】同一平面内不相交的两条直线叫做平行线,故说法①错误;说法②正确;两条直线相交所成的四个角中,如果有一个角是直角,那么这两条直线互相垂直,当这两个相等的角是对顶角时则不垂直,故说法③错误;根据对顶角的定义知,说法④错误;故正确的说法有1个;故选:A【点睛】本题考查了两条直线的位置关系中的相关概念及性质,掌握这些概念是关键.2、C【分析】利用成轴对称的两个点的坐标的特征,即可解题.【详解】根据A点和B点的纵坐标相等,即可知它们的对称轴为.故选:C.【点睛】本题考查坐标与图形变化—轴对称,掌握成轴对称的两个点的坐标的特点是解答本题的关键.3、C【分析】由平行线的性质可知,再由AC为公共边,即要想利用“边角边”证明△ABC≌△CDA,可添加AD=CB即可.【详解】∵AD∥BC,∴.∵AC为公共边,∴只需AD=CB,即可利用“边角边”证明△ABC≌△CDA.故选:C.【点睛】本题考查平行线的性质,三角形全等的判定.理解“边角边”即为两边及其夹角是解答本题的关键.4、B【分析】根据周长求出边长,利用菱形的面积公式即可求解.【详解】∵菱形的周长为8,∴边长=2,∴菱形的面积=2×2=4,故选:B.【点睛】此题考查菱形的性质,熟练掌握菱形的面积=底×高是解题的关键.5、C【分析】设火车的车长是x米,根据经过一条长400m的隧道需要30秒的时间,可求火车速度,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10秒,可求火车上速度,根据车速相同可列方程求解即可.【详解】解:设火车的长度是x米,根据题意得出:=,解得:x=200,答:火车的长为200米;故选择C.【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系,列方程求解.6、D【分析】把x=1代入方程x2+mx-3=0,得出一个关于m的方程,解方程即可.【详解】解:把x=1代入方程x2+mx-3=0得:1+m-3=0,解得:m=2.故选:D.【点睛】本题考查了一元二次方程的解和解一元一次方程,关键是能根据题意得出一个关于m的方程.7、B【分析】根据一元二次方程根的判别式判断即可.【详解】解:、△,方程有两个不等实数根,不符合题意;、△,方程有两个相等实数根,符合题意;、△,方程有两个不相等实数根,不符合题意;、△,方程没有实数根,不符合题意;故选:B.【点睛】本题考查了一元二次方程根的判别式,解题的关键是掌握一元二次方程根的情况与判别式△的关系:(1)△方程有两个不相等的实数根;(2)△方程有两个相等的实数根;(3)△方程没有实数根.8、C【分析】根据线段的性质进行解答即可.【详解】解:最短的路线选①的理由是两点之间,线段最短,故选:C.【点睛】本题主要考查了线段的性质,解题的关键是掌握两点之间,线段最短.9、C【分析】过点F作MN⊥AD于点M,交BC于点N,证明△AFE∽△CFB,可证得,得MN=4MF,再根据三角形面积公式可得结论.【详解】解:过点F作MN⊥AD于点M,交BC于点N,连接BD,∵四边形ABCD是平行四边形,∴AD//BC,AD=BC∴△AFE∽△CFB∴ ∵DE=2AE∴AD=3AE=BC∴ ∴,即 又 ∴∴ 故选:C【点睛】本题主要考查了平行四边形的性质,相似三角形的判定与性质,解答此题的关键是能求出两三角形的高的数量关系.10、B【分析】根据题意画出图形,作出辅助线,由于AC与AB在圆心的同侧还是异侧不能确定,故应分两种情况进行讨论.【详解】解:分别作OD⊥AC,OE⊥AB,垂足分别是D、E.∵OE⊥AB,OD⊥AB,∴AE=AB=,AD=AC=,∴,∴∠AOE=45°,∠AOD=30°,∴∠CAO=90°-30°=60°,∠BAO=90°-45°=45°,∴∠BAC=45°+60°=105°,同理可求,∠CAB′=60°-45°=15°.∴∠BAC=15°或105°,故选:B.【点睛】本题考查的是垂径定理及直角三角形的性质,解答此题时进行分类讨论,不要漏解.二、填空题1、【分析】过点A作AH⊥BC于点H,根据等腰直角三角形的性质可得DH=,CD=,再证明△ABF∽△DCA,进而对应边成比例即可求出FB的长.【详解】解:如图,过点A作AH⊥BC于点H,∵∠BAC=90°,AB=AC=1,∴BC=,∵AH⊥BC,∴BH=CH=,∴AH=,∵AD=DE=,∴DH=,∴CD=DH-CH=,∵∠ABC=∠ACB=45°,∴∠ABF=∠ACD=135°,∵∠DAE=45°,∴∠DAF=135°,∵∠BAC=90°,∴∠BAF+∠DAC=45°,∵∠BAF+∠F=45°,∴∠F=∠DAC,∴△ABF∽△DCA,∴,∴,∴BF=,故答案为:.【点睛】本题考查了相似三角形的判定与性质,等腰直角三角形,解决本题的关键是得到△ABF∽△DAC.2、-3【分析】两个方程相加得出3x+3y=3a+9,根据已知条件x,y互为相反数知x+y=0,得出关于a的方程,解方程即可.【详解】解:两个方程相加得:3x+3y=3a+9,∵x、y互为相反数,∴x+y=0,∴3x+3y=0,∴3a+9=0,解得:a=-3,故答案为:-3.【点睛】本题考查了二元一次方程组的解、互为相反数的性质;根据题意得出关于a的方程是解决问题的关键.3、【分析】根据二次根式的乘法法则:(a≥0,b≥0)计算.【详解】解:原式==,故答案为:.【点睛】本题考查了二次根式的乘除法,掌握二次根式的乘法法则,最后的化简是解题关键.4、6【分析】设AD=xcm,则AB=3xcm,根据线段中点定义求出cm,列得,求出x即可得到答案.【详解】解:设AD=xcm,则AB=3xcm,∵点C是线段AB的中点,∴cm,∵DC=2cm,∴,得x=2,∴AB=3xcm=6cm,故答案为:6.【点睛】此题考查了线段中点的定义,列一元一次方程解决几何图形问题,正确设出AD=xcm,则AB=3xcm,由此列出方程是解题的关键.5、【分析】绝对值大于1的数可以用科学记数法表示,一般形式为a×10n, 为正整数,且比原数的整数位数少1,据此可以解答.【详解】解:.故答案是:.【点睛】本题考查用科学记数法表示较大的数,熟练掌握一般形式为 ,其中, 是正整数,解题的关键是确定 和 的值.三、解答题1、(1)6(2)3x-25【分析】(1)根据负指数,零次幂,绝对值的性质,可得答案;(2)利用平方差公式计算即可.(1)原式=2+1+3=6;(2)原式=.【点睛】本题考查了实数的运算及整式的混合运算,掌握负指数,零次幂,绝对值的性质,平方差公式是解题关键.2、【分析】由②①,得:④,由③②,得:⑤,再由由⑤④,得:,再将代入④,可得,然后将,代入①,可得,即可求解.【详解】解: ,由②①,得:④,由③②,得:⑤,由⑤④,得:,解得:,将代入④,得:,解得:,将,代入①,得: ,解得: 方程组的解为:.【点睛】本题主要考查了解三元一次方程组,熟练掌握三元一次方程组的解法是解题的关键.3、(1)见祥解(2)见祥解【分析】(1)求出BD=DC,∠GBD=∠DCF,证出△BDG≌△CDF即可;(2)根据线段垂直平分线性质得出EF=EG,求出∠DFE=∠DGE,∠DFE=∠BGD,即可得出答案.(1)解 ∵D为BC中点,∴BD=DC(中点的定义),∵BG∥FC(已知),∴∠GBD=∠DCF(两直线平行,内错角相等),在△BDG和△CDF中,,∴△BDG≌△CDF(ASA),∴BG=CF(全等三角形对应边相等);(2)解:∵D是BC边的中点,DE⊥GF,即DE为线段GF的中垂线,∴EF=EG,∴∠DFE=∠DGE(等边对等角),)∵∠DFE=∠BGD(全等三角形对应角相等),∴∠BGD=∠DGE(等量代换).【点睛】本题考查全等三角形的判定与性质,线段垂直平分线的性质.解答本题的关键是明确题意,找出所求问题需要的条件,证明三角形全等.4、50【分析】设购进x盏节能灯,列一元一次方程解答.【详解】解:设购进x盏节能灯,由题意得25x+160=30(x-3)解得x=50,答:该商店共购进了50盏节能灯.【点睛】此题考查了一元一次方程的实际应用,正确理解题意是解题的关键.5、【分析】直接利用二次根式的性质化简进而得出答案.【详解】解:【点睛】此题主要考查了二次根式的乘除运算, 正确化简二次根式是解题关键.
相关试卷
这是一份【高频真题解析】2022年最新中考数学备考模拟练习 (B)卷(含答案及详解),共23页。试卷主要包含了如果,那么的取值范围是,下列各题去括号正确的是.,下列分式中,最简分式是,下列各数中,是无理数的是等内容,欢迎下载使用。
这是一份【真题汇总卷】2022年北京市房山区中考数学备考模拟练习 (B)卷(含答案解析),共20页。试卷主要包含了如图,OM平分,,,则.,抛物线的顶点坐标是等内容,欢迎下载使用。
这是一份【历年真题】2022年北京市顺义区中考数学备考模拟练习 (B)卷(含答案及解析),共31页。试卷主要包含了二次函数y=,下列命题正确的是等内容,欢迎下载使用。