【高频真题解析】2022年江西省上饶市中考数学模拟专项测评 A卷(含答案及解析)
展开
这是一份【高频真题解析】2022年江西省上饶市中考数学模拟专项测评 A卷(含答案及解析),共24页。试卷主要包含了若抛物线的顶点坐标为,已知的两个根为,下列方程中,解为的方程是等内容,欢迎下载使用。
2022年江西省上饶市中考数学模拟专项测评 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、现有四张卡片依次写有“郑”“外”“加”“油”四个字(四张卡片除字不同外其他均相同),把四张卡片背面向上洗匀后,从中随机抽取两张,则抽到的汉字给好是“郑”和“外”的概率是( )A. B. C. D.2、如图,表示绝对值相等的数的两个点是( )A.点C与点B B.点C与点D C.点A与点B D.点A与点D3、下列几何体中,俯视图为三角形的是( )A. B.C. D.4、若抛物线的顶点坐标为(1,-4),则抛物线与轴的交点个数为( )A.0个 B.1个 C.2个 D.无法确定5、如图,在梯形中,ADBC,过对角线交点的直线与两底分别交于点,下列结论中,错误的是( )A. B. C. D.6、已知的两个根为、,则的值为( )A.-2 B.2 C.-5 D.57、下列方程中,解为的方程是( )A. B. C. D.8、如图,有一条直的宽纸带,按图折叠,则∠α的度数等于( )A.50° B.65° C.75° D.80°9、如图,与交于点,与互余,,则的度数为( )A. B. C. D.10、下列关于x的方程中,一定是一元二次方程的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在中,,和的平分线分别交于点、,若,,,则的长为__________.2、如图,已知点B在线段CF上,AB∥CD,AD∥BC,DF交AB于点E,联结AF、CE,S△BCE:S△AEF的比值为___.3、如图点O在直线上,与互为余角,则的大小为________.4、二次函数y=ax2+bx+4的图象如图所示,则关于x的方程a(x+1)2+b(x+1)=﹣4的根为______.5、如图,在▱ABCD中,AB=8,AD=6,E为AD延长线上一点,且DE=4,连接BE,BE交CD于点F,则CF=_____.三、解答题(5小题,每小题10分,共计50分)1、已知:二次函数y=x2﹣1.(1)写出此函数图象的开口方向、对称轴、顶点坐标;(2)画出它的图象.2、已知抛物线的顶点为,且过点.(1)求抛物线的解析式;(2)将抛物线先向左平移2个单位长度,再向下平移个单位长度后得到新抛物线.①若新抛物线与x轴交于A,B两点(点A在点B的左侧),且,求m的值;②若,是新抛物线上的两点,当时,均有,请直接写出n的取值范围.3、解不等式组,并写出它的所有正整数解.4、小明根据学习函数的经验,对函数y=﹣|x|+3的图象与性质进行了探究.下面是小明的探究过程,请你解决相关问题.(1)如表y与x的几组对应值:x…-4-3-2-101234…y…-1012321a-1…①a= ;②若A(b,﹣7)为该函数图象上的点,则b= ;(2)如图,在平面直角坐标系中,描出以上表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象:①该函数有 (填“最大值”或“最小值”),并写出这个值为 ;②求出函数图象与坐标轴在第二象限内所围成的图形的面积.5、在平面直角坐标系中二次函数的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点.(1)求A、B两点的坐标;(2)已知点D在二次函数的图象上,且点D和点C到x轴的距离相等,求点D的坐标. -参考答案-一、单选题1、C【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【详解】解:列表如下: 郑外加油郑 外,郑加,郑油,郑外郑,外 加,外油,外加郑,加外,加 油,加油郑,油外,油加,油 由表可知,共有12种等可能结果,其中抽到的汉字恰好是“郑”和“外”的有2种结果,所以抽到的汉字恰好是“郑”和“外”的概率为.故选:C.【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.2、D【分析】根据数轴可以把A、B、C、D四个点表示的数写出来,然后根据写出的数即可得到那两个数的绝对值相等,从而可以得到问题的答案.【详解】解:由数轴可得,点A、B、C、D在数轴上对应的数依次是:−3,2,-1,3,则|−3|=|3|,故点A与点D表示的数的绝对值相等,故选:D.【点睛】本题考查数轴,解题的关键是利用数形结合的思想找出所求问题需要的条件.3、C【分析】依题意,对各个图形的三视图进行分析,即可;【详解】由题知,对于A选项:主视图:三角形;侧视图为:三角形;俯视图为:有圆心的圆;对于B选项:主视图:三角形;侧视图为:三角形;俯视图为:四边形;对于C选项:主视图:长方形形;侧视图为:两个长方形形;俯视图为:三角形;对于D选项:主视图:正方形;侧视图:正方形;俯视图:正方形;故选:C【点睛】本题考查几何图形的三视图,难点在于空间想象能力及画图的能力;4、C【分析】根据顶点坐标求出b=-2a,把b=-2a,(1,-4)代入得,再计算出即可得到结论【详解】解:∵抛物线的顶点坐标为(1,-4),∴ ∴ ∴ 把(1,-4)代入,得, ∴ ∴∴ ∴抛物线与轴有两个交点故选:C【点睛】本题主要考查了抛物线与x轴交点个数的确定,抛物线与x轴交点个数是由判别式确定:时,抛物线与x轴有2个交点;时,抛物线与x轴有1个交点;时,抛物线与x轴没有交点5、B【分析】根据ADBC,可得△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,再利用相似三角形的性质逐项判断即可求解.【详解】解:∵ADBC,∴△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,∴,故A正确,不符合题意;∵ADBC,∴△DOE∽△BOF,∴,∴,∴,故B错误,符合题意;∵ADBC,∴△AOD∽△COB,∴, ∴,故C正确,不符合题意;∴ ,∴,故D正确,不符合题意;故选:B【点睛】本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键.6、B【分析】直接运用一元二次方程根与系数的关系求解即可.【详解】解:∵的两个根为、,∴故选:B【点睛】本题主要考查了一元二次方程根与系数的关系,若、为一元二次方程的两个实数根,则有,.7、B【分析】把x=5代入各个方程,看看是否相等即可【详解】解:A. 把x=5代入得:左边=8,右边=5,左边≠右边,所以,不是方程的解,故本选项不符合题意;B. 把x=5代入得:左边=3,右边=3,左边=右边,所以,是方程的解,故本选项符合题意;C. 把x=5代入得:左边=15,右边=10,左边≠右边,所以,不是方程的解,故本选项不符合题意;D. 把x=5代入得:左边=7,右边=3,左边≠右边,所以,不是方程的解,故本选项不符合题意;故选:B【点睛】本题考查了一元一次方程的解,能使方程两边都相等的未知数的值是方程的解,能熟记一元一次方程的解的定义是解答本题的关键8、B【分析】根据题意得:BG∥AF,可得∠FAE=∠BED=50°,再根据折叠的性质,即可求解.【详解】解:如图,根据题意得:BG∥AF,∴∠FAE=∠BED=50°,∵AG为折痕,∴ .故选:B【点睛】本题主要考查了图形的折叠,平行线的性质,熟练掌握两直线平行,同位角相等;图形折叠前后对应角相等是解题的关键.9、B【分析】先由与互余,求解 再利用对顶角相等可得答案.【详解】解:与互余,,,,,故选:B.【点睛】本题考查的是互余的含义,角的和差关系,对顶角的性质,掌握“两个角互余的含义”是解本题的关键.10、C【分析】根据一元二次方程的定义判断.【详解】A.含有,不是一元二次方程,不合题意;B.整理得,-x+1=0,不是一元二次方程,不合题意;C.x2=0是一元二次方程,故此选项符合题意;D.当a=0时,ax2+bx+c=0,不是一元二次方程,不合题意.故选C.【点睛】本题考查了一元二次方程的定义,解题时要注意两个方面:1、一元二次方程包括三点:①是整式方程,②只含有一个未知数,③所含未知数的项的最高次数是2;2、一元二次方程的一般形式是ax2+bx+c=0(a≠0).二、填空题1、2【分析】利用角平分线以及平行线的性质,得到和,利用等边对等角得到,,最后通过边与边之间的关系即可求解.【详解】解:如下图所示:、分别是与的角平分线, , , , 故答案为:2.【点睛】本题主要是考查了等角对等边以及角平分线和平行的性质,熟练根据角平分线和平行线的性质,得到相等角,这是解决该题的关键.2、1【分析】连接BD,利用平行线间距离相等得到同底等高的三角形面积相等即可解答.【详解】解:连接BD,如下图所示:∵BC∥AD,∴S△AFD= S△ABD,∴S△AFD- S△AED= S△ABD- S△AED,即S△AEF= S△BED,∵AB∥CD,∴S△BED=S△BEC,∴S△AEF=S△BEC,∴S△BCE:S△AEF=1.故答案为:1.【点睛】本题以平行为背景考查了同底等高的三角形面积相等,找到要求的三角形有关的同(等)底或同(等)高是解题的关键.3、90°【分析】利用互余的定义,平角的定义,角的差计算即可.【详解】∵与互为余角,∴∠AOC+∠BOD=90°,∴∠COD=180°-90°=90°,故答案为:90°.【点睛】本题考查了互余即两个角的和是90°,角的和差,熟练记住互余的定义,灵活运用角的和差是解题的关键.4、x【分析】根据图象求出方程ax2+bx+4=0的解,再根据方程的特点得到x+1=-4或x+1=1,求出x的值即可.【详解】解:由图可知:二次函数y=ax2+bx+4与x轴交于(-4,0)和(1,0),∴ax2+bx+4=0的解为:x=-4或x=1,则在关于x的方程a(x+1)2+b(x+1)=-4中,x+1=-4或x+1=1,解得:x=-5或x=0,即关于x的方程a(x+1)2+b(x+1)=-4的解为x=-5或x=0,故答案为:x=-5或x=0.【点睛】本题考查的是抛物线与x轴的交点,能根据题意利用数形结合求出方程的解是解答此题的关键.5、【分析】根据平行四边形的性质可知,即可证明,推出,由此即可求出CF的长.【详解】∵四边形ABCD是平行四边形,∴,即,∴,,∴,∴.∵, ∴.∵∴,∴.故答案为:.【点睛】本题考查平行四边形的性质,相似三角形的判定和性质.掌握相似三角形的判定方法是解答本题的关键.三、解答题1、(1)抛物线的开口方向向上,对称轴为y轴,顶点坐标为(0,﹣1).(2)图像见解析.【分析】(1)根据二次函数y=a(x-h)2+k,当a>0时开口向上;顶点式可直接求得其顶点坐标为(h,k)及对称轴x=h;(2)可分别求得抛物线顶点坐标以及抛物线与x轴、y轴的交点坐标,利用描点法可画出函数图象.(1)解:(1)∵二次函数y=x2﹣1,∴抛物线的开口方向向上,顶点坐标为(0,﹣1),对称轴为y轴;(2)解:在y=x2﹣1中,令y=0可得x2﹣1=0.解得x=﹣1或1,所以抛物线与x轴的交点坐标为(-1,0)和(1,0);令x=0可得y=﹣1,所以抛物线与y轴的交点坐标为(0,-1);又∵顶点坐标为(0,﹣1),对称轴为y轴,再求出关于对称轴对称的两个点,将上述点列表如下:x-2-1012y=x2﹣130-103描点可画出其图象如图所示:【点睛】本题考察了二次函数的开口方向、对称轴以及顶点坐标.以及二次函数抛物线的画法.解题的关键是把二次函数的一般式化为顶点式.描点画图的时候找到关键的几个点,如:与x轴的交点与y轴的交点以及顶点的坐标.2、(1)(2)①②【分析】(1)二次函数的顶点式为,将点坐标代入求解的值,回代求出解析式的表达式;(2)①平移后的解析式为,可知对称轴为直线,设点坐标到对称轴距离为,有点坐标到对称轴距离为,,,可得,解得,可知点坐标为,将坐标代入解析式解得的值即可;②由题意知该抛物线图像开口向上,对称轴为直线,点关于对称轴对称的点的横坐标为,知,解得,由时,均有可得计算求解即可(1)解:∵的顶点式为∴由题意得解得(舍去),,,∴抛物线的解析式为.(2)解:①平移后的解析式为∴对称轴为直线∴设点坐标到对称轴距离为,点坐标到对称轴距离为∴,∵∴解得∴点坐标为将代入解析式解得∴的值为8.②解:由题意知该抛物线图像开口向上,对称轴为直线,点关于对称轴对称的点的横坐标为,∴解得 ∵时,均有∴解得∴的取值范围为.【点睛】本题考查了二次函数的解析式、图象的平移与性质、与x轴的交点坐标等知识.解题的关键在于对二次函数知识的熟练灵活把握.3、﹣2≤x<3.5,正整数解有:1、2、3【分析】分别解不等式组中的两个不等式,再确定两个不等式的解集的公共部分得到不等式组的解集,再写出范围内的正整数解即可.【详解】解:解不等式4(x+1)≤7x+10,得:x≥﹣2,解不等式x﹣5,得:x<3.5,故不等式组的解集为:﹣2≤x<3.5,所以其正整数解有:1、2、3.【点睛】本题考查的是一元一次不等式组的解法,掌握“解不等式组的步骤及确定两个不等式的解集的公共部分”是解本题的关键.4、(1)①0;②±10;(2)见解析;①最大值,3;②【分析】(1)①根据表中对应值和对称性即可求解;②将点A坐标代入函数解析式中求解即可;(2)根据表中对应值,利用描点法画出函数图象即可.①根据图象即解答即可;②根据图象在第二象限的部分,利用三角形的面积公式求解即可.(1)解:①由表可知,该函数图象关于y轴对称,∵当x=-3时,y=0,∴当x=3时,a=0,故答案为:0;②将A(b,-7)代入y=﹣|x|+3中,得:-7 =﹣|b|+3,即|b|=10,解得:b=±10,故答案为:±10;(2)解:函数y=﹣|x|+3的图象如图所示:①由图象可知,该函数有最大值,最大值是3,故答案为:最大值,3;②由图象知,函数图象与坐标轴在第二象限内所围成的图形的面积为.【点睛】本题考查求自变量或函数值、画函数图象、从图象中获取信息、解绝对值方程、三角形的面积公式,理解题意,准确从表中和图象中获取有效信息是解答的关键.5、(1)A(1,0),B(5,0)(2)(6,5)【分析】(1)先将点C的坐标代入解析式,求得a;然后令y=0,求得x的值即可确定A、B的坐标;(2)由可知该抛物线的顶点坐标为(3,-4),又点D和点C到x轴的距离相等,则点D在x轴的上方,设D的坐标为(d,5),然后代入解析式求出d即可.(1)解:∵二次函数的图象与y轴交于∴,解得a=1∴二次函数的解析式为∵二次函数的图象与x轴交于A、B两点∴令y=0,即,解得x=1或x=5∵点A在点B的左侧∴A(1,0),B(5,0).(2)解:由(1)得函数解析式为∴抛物线的顶点为(3,-4)∵点D和点C到x轴的距离相等,即为5∴点D在x轴的上方,设D的坐标为(d,5)∴,解得d=6或d=0∴点D的坐标为(6,5).【点睛】本题主要考查了二次函数与坐标轴的交点、二次函数抛物线的顶点、点到坐标轴的距离等知识点,灵活运用相关知识成为解答本题的关键.
相关试卷
这是一份【高频真题解析】最新中考数学模拟专项测评 A卷(含答案及详解),共21页。试卷主要包含了已知,,,则,若a<0,则= .,方程的解为等内容,欢迎下载使用。
这是一份【高频真题解析】中考数学模拟专项测评 A卷(含答案及解析),共21页。试卷主要包含了某玩具店用6000元购进甲,在,,,中,最大的是,计算3.14-的结果为 .等内容,欢迎下载使用。
这是一份【历年真题】2022年江西省上饶市中考数学模拟专项测试 B卷(含答案及解析),共24页。试卷主要包含了下列运算中,正确的是,在下列运算中,正确的是等内容,欢迎下载使用。