![【高频真题解析】2022年辽宁省营口市中考数学第一次模拟试题(含详解)第1页](http://img-preview.51jiaoxi.com/2/3/12675146/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【高频真题解析】2022年辽宁省营口市中考数学第一次模拟试题(含详解)第2页](http://img-preview.51jiaoxi.com/2/3/12675146/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【高频真题解析】2022年辽宁省营口市中考数学第一次模拟试题(含详解)第3页](http://img-preview.51jiaoxi.com/2/3/12675146/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
【高频真题解析】2022年辽宁省营口市中考数学第一次模拟试题(含详解)
展开
这是一份【高频真题解析】2022年辽宁省营口市中考数学第一次模拟试题(含详解),共24页。试卷主要包含了要使式子有意义,则,下列方程是一元二次方程的是,有下列说法,下列图形是中心对称图形的是.等内容,欢迎下载使用。
2022年辽宁省营口市中考数学第一次模拟试题 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,四棱柱的高为9米,底面是边长为6米的正方形,一只蚂蚁从如图的顶点A开始,爬向顶点B.那么它爬行的最短路程为( )A.10米 B.12米 C.15米 D.20米2、已知,,且,则的值为( )A.1或3 B.1或﹣3 C.﹣1或﹣3 D.﹣1或33、某商品原价为 200 元,连续两次平均降价的百分率为 a ,连续两次降价后售价为 148 元, 下面所列方程正确的是 ( )A.200(1 a)2 148 B.200(1 a)2 148C.200(1 2a)2 148 D.200(1 a 2) 1484、要使式子有意义,则( )A. B. C. D.5、下列方程是一元二次方程的是( )A.x2+3xy=3 B.x2+=3 C.x2+2x D.x2=36、有下列说法:①两条不相交的直线叫平行线;②同一平面内,过一点有且只有一条直线与已知直线垂直;③两条直线相交所成的四个角中,如果有两个角相等,那么这两条直线互相垂直;④有公共顶点的两个角是对顶角.其中说法正确的个数是( )A.1 B.2 C.3 D.47、若关于x的不等式组有且仅有3个整数解,且关于y的方程的解为负整数,则符合条件的整数a的个数为( )A.1个 B.2个 C.3个 D.4个8、 “科学用眼,保护视力”是青少年珍爱生命的具体表现,某班50名同学的视力检查数据如下表:视力4.34.44.54.64.74.84.95.0人数2369121053则视力的众数是( )A.4.5 B.4.6 C.4.7 D.4.89、下列图形是中心对称图形的是( ).A. B.C. D.10、如图,为直线上的一点,平分,,,则的度数为( )A.20° B.18° C.60° D.80°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、等腰三角形ABC中,项角A为50°,点D在以点A为圆心,BC的长为半径的圆上,若BD=BA,则∠DBC的度数为_____.2、若矩形ABCD的对角线AC,BD相交于点,且,,则矩形ABCD的面积为_____________.3、如图(1)是一个横断面为抛物线形状的拱桥,水面在l时,拱顶(拱桥洞的最高点)离水面3米,水面宽4米.如果按图(2)建立平面直角坐标系,那么抛物线的解析式是_____.4、如图,将一副直角三角板叠放在一起,使直角顶点重合于点,若∠COB=50°,则∠AOD=_______5、如图,在△ABC中,∠ABC=120°,AB=12,点D在边AC上,点E在边BC上,sin∠ADE=,ED=5,如果△ECD的面积是6,那么BC的长是_____.三、解答题(5小题,每小题10分,共计50分)1、如图,一次函数与反比例函数(k≠0)交于点A、B两点,且点A的坐标为(1,3),一次函数与轴交于点C,连接OA、OB.(1)求一次函数和反比例函数的表达式;(2)求点B的坐标及的面积;(3)过点A作轴的垂线,垂足为点D.点M是反比例函数第一象限内图像上的一个动点,过点M作轴的垂线交轴于点N,连接CM.当与Rt△CNM相似时求M点的坐标.2、如图,在四边形ABCD中,BA=BC,AC⊥BD,垂足为O.P是线段OD上的点(不与点O重合),把线段AP绕点A逆时针旋转得到AQ,∠OAP=∠PAQ,连接PQ,E是线段PQ的中点,连接OE交AP于点F.(1)若BO=DO,求证:四边形ABCD是菱形;(2)探究线段PO,PE,PF之间的数量关系.3、化简:(1);(2)4、如图,点A,B,C,D在同一条直线上,CEDF,EC=BD,AC=FD.求证:AE=FB.5、沙坪坝区某街道为积极响应“开展全民义务植树40周年”活动,投入一定资金绿化一块闲置空地,购买了甲、乙两种树木共70棵,且甲种树木单价、乙种树木单价每棵分别为90元,80元,共用去资金6000元.(1)求甲、乙两种树木各购买了多少棵?(2)经过一段时间后,种植的这批树木成活率高,绿化效果好.该街道决定再购买一批这两种树木绿化另一块闲置空地,两种树木的购买数量均与第一批相同,购买时发现甲种树木单价上涨了a%,乙种树木单价下降了a%,且总费用不超过6500元,求a的最大整数值. -参考答案-一、单选题1、C【分析】将立体图形展开,有两种不同的展法,连接AB,利用勾股定理求出AB的长,找出最短的即可.【详解】解:如图,(1)AB==;(2)AB==15,由于15<,则蚂蚁爬行的最短路程为15米.故选:C.【点睛】本题考查了平面展开--最短路径问题,要注意,展开时要根据实际情况将图形安不同形式展开,再计算.2、A【分析】由题意利用乘方和绝对值求出x与y的值,即可求出x-y的值.【详解】解:∵,, ,∴x=1,y=-2,此时x-y=3;x=-1,y=-2,此时x-y=1.故选:A.【点睛】此题考查了有理数的乘方,绝对值,以及有理数的减法,熟练掌握运算法则是解本题的关键.3、B【分析】第一次降价后价格为,第二次降价后价格为整理即可.【详解】解:第一次降价后价格为第二次降价后价格为故选B.【点睛】本题考查了一元二次方程的应用.解题的关键在于明确每次降价前的价格.4、B【分析】根据分式有意义的条件,分母不为0,即可求得答案.【详解】解:要使式子有意义,则故选B【点睛】本题考查了分式有意义的条件,理解分式有意义的条件是“分母不为0”是解题的关键.5、D【分析】根据一元二次方程的定义逐个判断即可.只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.【详解】解:A.是二元二次方程,不是一元二次方程,故本选项不符合题意;B.是分式方程,故本选项不符合题意;C.不是方程,故本选项不符合题意;D.是一元二次方程,故本选项符合题意;故选:D.【点睛】本题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键.6、A【分析】根据平行线的定义、垂直的定义及垂线的唯一性、对顶角的含义即可判断.【详解】同一平面内不相交的两条直线叫做平行线,故说法①错误;说法②正确;两条直线相交所成的四个角中,如果有一个角是直角,那么这两条直线互相垂直,当这两个相等的角是对顶角时则不垂直,故说法③错误;根据对顶角的定义知,说法④错误;故正确的说法有1个;故选:A【点睛】本题考查了两条直线的位置关系中的相关概念及性质,掌握这些概念是关键.7、C【分析】解不等式组得到,利用不等式组有且仅有3个整数解得到,再解分式方程得到,根据解为负整数,得到a的取值,再取共同部分即可.【详解】解:解不等式组得:,∵不等式组有且仅有3个整数解,∴,解得:,解方程得:,∵方程的解为负整数,∴,∴,∴a的值为:-13、-11、-9、-7、-5、-3,…,∴符合条件的整数a为:-13,-11,-9,共3个,故选C.【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.8、C【分析】出现次数最多的数据是样本的众数,根据定义解答.【详解】解:∵4.7出现的次数最多,∴视力的众数是4.7,故选:C.【点睛】此题考查了众数的定义,熟记定义是解题的关键.9、A【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,据此可得结论.【详解】解:选项B、C、D均不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形,选项A能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形,故选:A.【点睛】本题主要考查了中心对称图形,掌握中心对称图形的定义是解题关键.10、A【分析】根据角平分线的定义得到,从而得到,再根据可得,即可求出结果.【详解】解:∵OC平分,∴,∴,∵,∴,∴,故选:A.【点睛】本题主要考查角的计算的知识点,运用好角的平分线这一知识点是解答的关键.二、填空题1、15°或115°【分析】根据题意作出图形,根据等腰三角形的性质和三角形的内角和定理求得,,根据即可求得∠DBC的度数【详解】解:如图,等腰三角形ABC中,顶角为50°,点D在以点A为圆心,BC的长为半径的圆上,, BD=BA,又当在位置时,同理可得 故答案为:15°或115°【点睛】本题考查了圆的性质,三角形全等的性质与判定,三角形内角和定理,等腰三角形的定义,根据题意画出图形是解题的关键.2、【分析】如图,过点O作,根据矩形的对角线相等且互相平分可得,,,由得,利用勾股定理求出,由矩形面积得解.【详解】如图,过点O作,∵四边形ABCD是矩形,∴,,,∵,∴,∴,∴,∴,,∴.故答案为:.【点睛】本题考查矩形的性质与勾股定理,掌握矩形的性质是解题的关键.3、【分析】设出抛物线方程y=ax2(a≠0)代入坐标(-2,-3)求得a.【详解】解:设出抛物线方程y=ax2(a≠0),由图象可知该图象经过(-2,-3)点,∴-3=4a,a=-,∴抛物线解析式为y=-x2.故答案为:.【点睛】本题主要考查二次函数的应用,解题的关键在于能够熟练掌握待定系数法求解二次函数解析式.4、130°130度【分析】先计算出,再根据可求出结论.【详解】解:∵, ∴ ∵ ∴ 故答案为:130°【点睛】本题考查了角的计算及余角的计算,熟悉图形是解题的关键.5、##【分析】如图,过点E作EF⊥BC于F,过点A作AH⊥CB交CB的延长线于H.解直角三角形求出BH,CH即可解决问题.【详解】解:如图,过点E作EF⊥BC于F,过点A作AH⊥CB交CB的延长线于H.∵∠ABC=120°,∴∠ABH=180°﹣∠ABC=60°,∵AB=12,∠H=90°,∴BH=AB•cos60°=6,AH=AB•sin60°=6,∵EF⊥DF,DE=5,∴sin∠ADE== ,∴EF=4,∴DF===3,∵S△CDE=6,∴ ·CD·EF=6,∴CD=3,∴CF=CD+DF=6,∵tanC==,∴ =,∴CH=9,∴BC=CH﹣BH=9﹣6.故答案为:【点睛】本题主要考查了解直角三角形,根据题意构造合适的直角三角形是解题的关键.三、解答题1、(1)一次函数表达式为,反比例函数表达式为;(2),;(3)或【分析】(1)把分别代入一次函数与反比例函数,解出,即可得出答案;(2)把一次函数和反比例函数联立求解即可求出点B坐标,令代入一次函数解出点C坐标,由即可;(3)根据相似三角形的判定:两边成比例且夹角相等的两个三角形相似,找出对应边成比例求解即可.【详解】(1)把代入一次函数得:,解得:,∴一次函数表达式为,把代入反比例函数得:,即,∴反比例函数表达式为;(2),解得:或,∴,令代入得:,∴,∴;(3)①当时,,,,,,∴,即,解得:,,∵M在第一象限,∴,,∴,②当时,,∴,即,解得:,,∵M在第一象限,∴,,∴,综上,当与相似时,M点的坐标为或.【点睛】本题考查反比例函数综合以及相似三角形的判定与性质,掌握相关知识点的应用是解题的关键.2、(1)见详解;(2)【分析】(1)根据线段垂直平分线的性质可知AB=AD,BC=CD,进而根据菱形的判定定理可求证;(2)连接AE并延长,交BD的延长线于点G,连接FQ,由题意易得,则有,然后可得,则有,进而可得,然后证明,即有,最后根据勾股定理可求解.【详解】(1)证明:∵AC⊥BD,BO=DO,∴AC垂直平分BD,∴AB=AD,BC=CD,∵BA=BC,∴BA=AD=CD=BC,∴四边形ABCD是菱形;(2)解:,理由如下:连接AE并延长,交BD的延长线于点G,连接FQ,如图所示:由旋转的性质可得AP=AQ,∵E是线段PQ的中点,∴,∵,,∴,∴,∵,∴,∴,设,∵AP=AQ,E是线段PQ的中点,∴,∴,∴,∴,∴,∵,∴(SAS),∴,,∴在Rt△QFP中,由勾股定理得:,∵E是线段PQ的中点,∴,∴.【点睛】本题主要考查菱形的判定、等腰三角形的性质与判定、垂直平分线的性质定理、勾股定理及相似三角形的性质与判定,熟练掌握菱形的判定、等腰三角形的性质与判定、垂直平分线的性质定理、勾股定理及相似三角形的性质与判定是解题的关键.3、(1);(2)【分析】(1)直接利用整式的加减运算法则化简得出答案;(2)整式的加减,正确去括号、合并同类项即可.【详解】解:(1);(2),,.【点睛】本题主要考查了整式的加减,正确去括号、合并同类项解题的关键是掌握相应的运算法则.4、证明见解析【分析】由证明再结合已知条件证明从而可得答案.【详解】证明:, EC=BD,AC=FD, 【点睛】本题考查的是全等三角形的判定与性质,掌握“利用证明三角形全等 ”是解本题的关键.5、(1)甲种树木购买了40棵,乙种树木购买了30棵(2)a的最大值为25【分析】(1)设甲种树木购买了x棵,乙种树木购买了y棵,根据总费用=单价×数量结合“购买了甲、乙两种树木共70棵,共用去资金6000元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总费用=单价×数量结合总费用不超过6500元,即可得出关于a的一元一次不等式,解之取其中的最大值即可得出结论.【小题1】解:设甲种树木购买了x棵,乙种树木购买了y棵,根据题意得:,解得:,答:甲种树木购买了40棵,乙种树木购买了30棵.【小题2】根据题意得:90×(1+a%)×40+80×(1-a%)×30≤6500,解得:a≤25.答:a的最大值为25.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.
相关试卷
这是一份2023年辽宁省营口市中考数学真题(含解析),共31页。试卷主要包含了回答第二部分时,必须用0, 下列事件是必然事件的是等内容,欢迎下载使用。
这是一份【真题汇编】2022年辽宁省营口市中考数学第一次模拟试题(含答案及解析),共22页。试卷主要包含了在以下实数中,如图,在中,,,,分别在等内容,欢迎下载使用。
这是一份【难点解析】2022年辽宁省营口市中考数学三年真题模拟 卷(Ⅱ)(含答案详解),共22页。试卷主要包含了如图,在中,,,则的值为,下列说法正确的是等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)