【高频真题解析】2022年乌龙木齐市中考数学模拟专项测试 B卷(含答案及详解)
展开2022年乌龙木齐市中考数学模拟专项测试 B卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若,则下列分式化简正确的是( )
A. B. C. D.
2、由抛物线平移得到抛物线则下列平移方式可行的是( )
A.向左平移4个单位长度 B.向右平移4个单位长度
C.向下平移4个单位长度 D.向上平移4个单位长度
3、在数-12,π,-3.4,0,+3,中,属于非负整数的个数是( )
A.4 B.3 C.2 D.1
4、用配方法解一元二次方程x2+3=4x,下列配方正确的是( )
A.(x+2)2=2 B.(x-2)2=7 C.(x+2)2=1 D.(x-2)2=1
5、若单项式与是同类项,则的值是( )
A.6 B.8 C.9 D.12
6、若,,且a,b同号,则的值为( )
A.4 B.-4 C.2或-2 D.4或-4
7、平面直角坐标系中,点P(2,1)关于x轴对称的点的坐标是( )
A. B. C. D.
8、下列说法正确的有( )
①两点之间的所有连线中,线段最短;
②相等的角叫对顶角;
③过一点有且只有一条直线与已知直线平行;
④若AC=BC,则点C是线段AB的中点;
⑤在同一平面内,经过一点有且只有一条直线与已知直线垂直.
A.1个 B.2个 C.3个 D.4个
9、任何一个正整数n都可以进行这样的分解:n=p×q(p、q是正整数.且p≤q),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:S(n)=,例如18可以分解成1×18,2×9或3×6,则S(18)==,例如35可以分解成1×35,5×7,则S(35)=,则S(128)的值是( )
A. B. C. D.
10、已知线段AB=7,点C为直线AB上一点,且AC∶BC=4∶3,点D为线段AC的中点,则线段BD的长为( )
A.5或18.5 B.5.5或7 C.5或7 D.5.5或18.5
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、小明的妈妈在银行里存入人民币5000元,存期两年,到期后可得人民币5150元,如果设这项储蓄的年利率是x,根据题意,可列出方程是__________________.
2、某天上午的大课间,小明和小刚站在操场上,同一时刻测得他们的影子长分别是2m和2.2m,已知小明的身高是1.6m,则小刚的身高是______m.
3、某水果基地为提高效益,对甲、乙、丙三种水果品种进行种植对比研究.去年甲、乙、丙三种水果的种植面积之比为5:3:2,甲、乙、丙三种水果的平均亩产量之比为6:3:5.今年重新规划三种水果的种植面积,三种水果的平均亩产量和总产量都有所变化.甲品种水果的平均亩产量在去年的基础上提高了50%,乙品种水果的平均亩产量在去年的基础上提高了20%,丙品种的平均亩产量不变.其中甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,丙品种水果增加的产量占今年水果总产量的,则三种水果去年的种植总面积与今年的种植总面积之比为______.
4、为了响应全民阅读的号召,某校图书馆利用节假日面向社会开放.据统计,第一个月进馆560人次,进馆人次逐月增加,第三个月进馆830人次.设该校图书馆第二个月、第三个月进馆人次的平均增长率为x,则可列方程为______.
5、某商场在“元旦”期间举行促销活动,顾客根据其购买商品标价的一次性总额,可以获得相应的优惠方法:①如不超过800元,则不予优惠;②如超过800元,但不超过1000元,则按购物总额给予8折优惠;③如超过1000元,则其中1000元给予8折优惠,超过1000元的部分给予7折优惠.促销期间,小明和他妈妈分别看中一件商品,若各自单独付款,则应分别付款720元和1150元;若合并付款,则他们总共只需付款______元.
三、解答题(5小题,每小题10分,共计50分)
1、 “119”全国消防日,某校为强化学生的消防安全意识,组织了“关注消防,珍爱家园”知识竞赛,满分为100分.现从八、九两个年级各随机抽取10名学生组成八年级代表队和九年级代表队,成绩如下(单位:分):
八年级代表队:80,90,90,100,80,90,100,90,100,80;
九年级代表队:90,80,90,90,100,70,100,90,90,100.
(1)填表:
代表队 | 平均数 | 中位数 | 方差 |
八年级代表队 | 90 |
| 60 |
九年级代表队 |
| 90 |
|
(2)结合(1)中数据,分析哪个代表队的学生竞赛成绩更好?请说明理由;
(3)学校想给满分的学生颁发奖状,如果该校九年级一共有600名学生且全部参加了知识竞赛,那么九年级大约有多少名学生可以获得奖状?
2、如图1,对于的顶点P及其对边MN上的一点Q,给出如下定义:以P为圆心,PQ长为半径的圆与直线MN的公共点都在线段MN上,则称点Q为关于点P的内联点.
在平面直角坐标系xOy中:
(1)如图2,已知点,点B在直线上.
①若点,点,则在点O,C,A中,点______是关于点B的内联点;
②若关于点B的内联点存在,求点B横坐标m的取值范围;
(2)已知点,点,将点D绕原点O旋转得到点F,若关于点E的内联点存在,直接写出点F横坐标n的取值范围.
3、计算:.
4、(1)解方程:
(2)我国古代数学专著《九章算术》中记载:“今有宛田,下周三十步,径十六步,问为田几何?”注释:宛田是指扇形形状的田,下周是指弧长,径是指扇形所在圆的直径.求这口宛田的面积.
5、如图,在平面直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边△AOB,点C为x轴正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD,连接DA并延长交y轴于点E.
(1)求证:△OBC≌△ABD.
(2)在点C的运动过程中,∠CAD的度数是否会变化?如果不变,请求出∠CAD的度数;如果变化,请说明理由.
(3)当点C运动到什么位置时,以A,E,C为顶点的三角形是等腰三角形?
-参考答案-
一、单选题
1、C
【分析】
由,令,再逐一通过计算判断各选项,从而可得答案.
【详解】
解:当,时,
,,故A不符合题意;
,故B不符合题意;
而 故C符合题意;
.故D不符合题意
故选:C.
【点睛】
本题考查的是利用特值法判断分式的变形,同时考查分式的基本性质,掌握“利用特值法解决选择题或填空题”是解本题的关键.
2、A
【分析】
抛物线的平移规律:上加下减,左加右减,根据抛物线的平移规律逐一分析各选项即可得到答案.
【详解】
解:抛物线向左平移4个单位长度可得: 故A符合题意;
抛物线向右平移4个单位长度可得:故B不符合题意;
抛物线向下平移4个单位长度可得: 故C不符合题意;
抛物线向上平移4个单位长度可得: 故D不符合题意;
故选A
【点睛】
本题考查的是抛物线图象的平移,掌握“抛物线的平移规律”是解本题的关键.
3、C
【分析】
非负整数即指0或正整数,据此进行分析即可.
【详解】
解:在数-12,π,-3.4,0,+3,中,属于非负整数的数是:0,+3,共2个,
故选:C.
【点睛】
本题主要考查了有理数.明确非负整数指的是正整数和0是解答本题的关键.
4、D
【分析】
根据题意将方程常数项移到右边,未知项移到左边,然后两边都加上4,左边化为完全平方式,右边合并即可得到答案.
【详解】
,
整理得:,
配方得:,即.
故选:D.
【点睛】
本题考查用配方法解一元二次方程,掌握配方法的步骤是解题的关键.
5、C
【分析】
根据同类项的定义可得,代入即可求出mn的值.
【详解】
解:∵与是同类项,
∴,
解得:m=3,
∴.
故选:C.
【点睛】
此题考查了同类项的定义,解题的关键是熟练掌握同类项的定义.同类项:如果两个单项式,他们所含的字母相同,并且相同字母的指数也相同,那么就称这两个单项式为同类项.
6、D
【分析】
根据绝对值的定义求出a,b的值,根据a,b同号,分两种情况分别计算即可.
【详解】
解:∵|a|=3,|b|=1,
∴a=±3,b=±1,
∵a,b同号,
∴当a=3,b=1时,a+b=4;
当a=-3,b=-1时,a+b=-4;
故选:D.
【点睛】
本题考查了绝对值,有理数的加法,考查分类讨论的数学思想,知道a,b同号分两种:a,b都是正数或都是负数是解题的关键.
7、B
【分析】
直接利用关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,得出答案.
【详解】
解:点P(2,1)关于x轴对称的点的坐标是(2,-1).
故选:B.
【点睛】
本题主要考查了关于x轴对称点的性质,正确掌握横纵坐标的关系是解题关键.
8、B
【分析】
根据线段的性质,对顶角相等的性质,平行公理,对各小题分析判断即可得解.
【详解】
解:①两点之间的所有连线中,线段最短,正确;
②相等的角不一定是对顶角,但对顶角相等,故本小题错误;
③过直线外一点有且仅有一条直线与已知直线平行,故本小题错误;
④若AC=BC,且A、B、C三点共线,则点C是线段AB的中点,否则不是,故本小题错误,
⑤在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;
所以,正确的结论有①⑤共2个.
故选:B.
【点睛】
本题考查了平行公理,线段的性质,对顶角的判断,是基础题,熟记概念与性质是解题的关键.
9、A
【分析】
由128=1×128=2×64=4×32=8×16结合最佳分解的定义即可知F(128)=.
【详解】
解:∵128=1×128=2×64=4×32=8×16,
∴F(128)=,
故选:A.
【点睛】
本题主要考查有理数的混合运算.理解题意掌握最佳分解的定义是解题的关键.
10、C
【分析】
根据题意画出图形,再分点C在线段AB上或线段AB的延长线上两种情况进行讨论.
【详解】
解:点C在线段AB上时,如图:
∵AB=7,AC∶BC=4∶3,
∴AC=4,BC=3,
∵点D为线段AC的中点,
∴AD=DC=2,
∴BD=DC+BC=5;
点C在线段AB的延长线上时,
∵AB=7,AC∶BC=4∶3,
设BC=3x,则AC=4x,
∴AC-BC=AB,即4x-3x=7,
解得x=7,
∴BC=21,则AC=28,
∵点D为线段AC的中点,
∴AD=DC=14,
∴BD=AD-AB=7;
综上,线段BD的长为5或7.
故选:C.
【点睛】
本题考查了两点间的距离,线段中点的定义,利用线段的比例得出AC、BC的长是解题关键,要分类讨论,以防遗漏.
二、填空题
1、5000+5000x×2=5150
【分析】
设这项储蓄的年利率是x,根据等量关系本息和为本金+本金×利率×期数=到期后的钱数,列方程5000+5000x×2=5150即可.
【详解】
解:设这项储蓄的年利率是x,依题意得:5000+5000x×2=5150.
故答案为:5000+5000x×2=5150.
【点睛】
本题考查银行存款本息和问题,掌握本金是存入银行的现金,利息=本金×利率×期数,本息和是本金与利息的和是解题关键.
2、1.76
【分析】
首先设小刚的身高是,根据平行投影的特点可得出比例关系,然后可求出小刚的身高.
【详解】
解:设小刚的身高是米,根据平行投影特点:在同一时刻,不同物体的物高和影长成比例;
可得比例关系:,
解可得:,
故答案为:1.76.
【点睛】
本题考查了平行投影特点,解题的关键是掌握在同一时刻,不同物体的物高和影长成比例.
3、##
【分析】
设去年甲、乙、丙三种水果的种植面积分别为: 设去年甲、乙、丙三种水果的平均亩产量分别为: 设今年的种植面积分别为: 再根据题中相等关系列方程:①,②,求解: 再利用丙品种水果增加的产量占今年水果总产量的,列方程 求解 从而可得答案.
【详解】
解: 去年甲、乙、丙三种水果的种植面积之比为5:3:2,
设去年甲、乙、丙三种水果的种植面积分别为:
去年甲、乙、丙三种水果的平均亩产量之比为6:3:5,
设去年甲、乙、丙三种水果的平均亩产量分别为:
则今年甲品种水果的平均亩产量为:
乙品种水果的平均亩产量为: 丙品种的平均亩产量为
设今年的种植面积分别为:
甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,
①,②,
解得:
又丙品种水果增加的产量占今年水果总产量的,
解得:
所以三种水果去年的种植总面积与今年的种植总面积之比为:
故答案为:
【点睛】
本题考查的是三元一次方程组的应用,设出合适的未知数与参数,确定相等关系,建立方程组,寻求未知量之间的关系是解本题的关键.
4、
【分析】
利用第三个月进馆人次第一个月进馆人次平均增长率),即可得出关于的一元二次方程,此题得解.
【详解】
解:依题意得:.
故答案为:.
【点睛】
本题考查了由实际问题抽象出一元二次方程,解题的关键是找准等量关系,正确列出一元二次方程.
5、1654或1780或1654
【分析】
根据题意知付款720元时,其实际标价为为720或900元;付款1150元,实际标价为1500元,再分别计算求出一次购买标价2220元或2400元的商品应付款即可.
【详解】
解:由题意知付款720元,实际标价为720或720×=900(元),
付款1150元,实际标价肯定超过1000元,
设实际标价为x,
依题意得:(x-1000)×0.7+1000×0.8=1150,
解得:x=1500(元),
如果一次购买标价720+1500=2220(元)的商品应付款:
1000×0.8+(2220-1000)×0.7=1654(元).
如果一次购买标价900+1500=2400(元)的商品应付款:
1000×0.8+(2400-1000)×0.7=1780(元).
故答案是:1654或1780.
【点睛】
本题考查了一元一次方程的应用,通过优惠政策利用解方程求出小明和他妈妈分别看中商品的售价是解题的关键.
三、解答题
1、
(1)90,90,80
(2)八年级代表队的学生竞赛成绩更好.因为两队平均数与中位数都相同,而八年级代表队的方差小,成绩更稳定
(3)180名
【分析】
(1)根据中位数的定义,平均数,方差的公式进行计算即可;
(2)根据平均数相等时,方差的意义进行分析即可;
(3)600乘以满分的人数所占的比例即可.
(1)
解:∵八年级代表队:80,80,80,90,90,90,90,100,100,100;
∴八年级代表队中位数为90
九年级代表队的平均数为90,
九年级代表队的方差为80
故答案为:
(2)
八年级代表队的学生竞赛成绩更好.因为两队平均数与中位数都相同,而八年级代表队的方差小,成绩更稳定
(3)
(名).
答:九年级大约有180名学生可以获得奖状
【点睛】
本题考查了求中位数,平均数,方差,样本估计总体,根据方差作决策,掌握以上知识是解题的关键.
2、
(1)①C,A
②
(2)和
【分析】
(1)①由内联点的定义可知C,A满足条件
②结合图象可知当点B为圆心的圆与AO线段相切时,有一个公共点,且符合内联点定义,故时均符合题意.
(2)由(1)问可知,当OE与OF,或OF与EF垂直时有一个公共点且满足内联点的定义,故由此可作图,作图见解析,即可由勾股定理、斜率的性质,解得和
(1)
①如图所示,由图像可知C,A点是关于点B的内联点
②如图所示,当点B为圆心的圆与AO线段相切时,有一个公共点,符合内联点定义
故.
(2)
如图所示,以O为圆心的圆O为点F点的运动轨迹,由(1)问可知当∠EFO或∠FOE为90°时,关于点E的内联点存在且只有一个,故当F点运动到和的范围内时,关于点E的内联点存在.
设F点坐标为(x,y),则,由图象即题意知
当F点在点时,,即有
,
当F点在点时,,即有
即
当F点在点时,,即有
即
解得或
故,
当F点在点时,,
即
化简得
且
即
即
化简得
联立
解得或x=0
故
综上所述,F点的横坐标n取值范围为和.
【点睛】
本题考查了有关圆和三角形的新定义概念的综合题目,结合题意作出图象,运用数形结合的思想,熟练应用勾股定理以及斜率是解题的关键.
3、
【分析】
由实数的运算法则计算即可.
【详解】
解:原式
.
【点睛】
本题考查了实数的混合运算,实数包括有理数和无理数,所以实数的混合运算包含了绝对值,幂的运算,开平方开立方等全部计算形式,仍满足先乘除后加减,有括号先算括号内的运算顺序.
4、(1),;(2)平方步
【分析】
(1)利用配方法,即可求解;
(2)利用扇形的面积公式,即可求解.
【详解】
解:(1),,
配方,得,
∴,
∴,;
(2)解:∵扇形的田,弧长30步,其所在圆的直径是16步,
∴这块田的面积(平方步).
【点睛】
本题主要考查了解一元二次方程,求扇形的面积,熟练掌握一元二次方程的解法,扇形的面积等于 乘以弧长再乘以扇形的半径是解题的关键.
5、(1)见解析;(2)点C在运动过程中,∠CAD的度数不会发生变化,∠CAD=60°;(3)当点C的坐标为(3,0)时,以A,E,C为顶点的三角形是等腰三角形.
【分析】
(1)先根据等边三角形的性质得∠OBA=∠CBD=60°,OB=BA,BC=BD,则∠OBC=∠ABD,然后可根据“SAS”可判定△OBC≌△ABD;
(2)由△AOB是等边三角形知∠BOA=∠OAB=60°,再由△OBC≌△ABD知∠BAD=∠BOC=60°,根据∠CAD=180°-∠OAB-∠BAD可得结论;
(3)由(2)易求得∠EAC=120°,进而得出以A,E,C为顶点的三角形是等腰三角形时,AE和AC是腰,最后根据Rt△AOE中,OA=1,∠OEA=30°,求得AC=AE=2,据此得到OC=1+2=3,即可得出点C的位置.
【详解】
解:(1)∵△AOB,△CBD都是等边三角形,
∴OB=AB,CB=DB,∠ABO=∠DBC,
∴∠OBC=∠ABD,
在△OBC和△ABD中,
∵,
∴△OBC≌△ABD(SAS);
(2)点C在运动过程中,∠CAD的度数不会发生变化,理由如下:
∵△AOB是等边三角形,
∴∠BOA=∠OAB=60°,
∵△OBC≌△ABD,
∴∠BAD=∠BOC=60°,
∴∠CAD=180°-∠OAB-∠BAD=60°;
(3)由(2)得∠CAD=60°,
∴∠EAC=180°-∠CAD =120°,
∴∠OEA=∠EAC-90°=30°,
∴以A,E,C为顶点的三角形是等腰三角形时,AE和AC是腰,
在Rt△AOE中,OA=1,∠OEA=30°,
∴AE=2,
∴AC=AE=2,
∴OC=1+2=3,
∴当点C的坐标为(3,0)时,以A,E,C为顶点的三角形是等腰三角形.
【点睛】
本题是三角形的综合问题,主要考查了全等三角形的判定与性质,等边三角形的性质的运用.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.解决本题的关键是利用等腰三角形的性质求出点C的坐标.
【历年真题】中考数学模拟专项测试 B卷(含答案及详解): 这是一份【历年真题】中考数学模拟专项测试 B卷(含答案及详解),共20页。试卷主要包含了不等式+1<的负整数解有,下列计算,下列变形中,正确的是等内容,欢迎下载使用。
【高频真题解析】2022年石家庄晋州市中考数学模拟专项测试 B卷(含答案详解): 这是一份【高频真题解析】2022年石家庄晋州市中考数学模拟专项测试 B卷(含答案详解),共25页。试卷主要包含了如图,在数轴上有三个点A,在中,,,那么的值等于,不等式+1<的负整数解有,的相反数是等内容,欢迎下载使用。
【真题汇编】2022年乌龙木齐市中考数学模拟真题 (B)卷(精选): 这是一份【真题汇编】2022年乌龙木齐市中考数学模拟真题 (B)卷(精选),共20页。试卷主要包含了下列二次根式的运算正确的是,下列各点在反比例的图象上的是,已知线段AB等内容,欢迎下载使用。