![2021-2022学年度强化训练北师大版七年级数学下册第五章生活中的轴对称难点解析练习题(含详解)第1页](http://img-preview.51jiaoxi.com/2/3/12675228/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度强化训练北师大版七年级数学下册第五章生活中的轴对称难点解析练习题(含详解)第2页](http://img-preview.51jiaoxi.com/2/3/12675228/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度强化训练北师大版七年级数学下册第五章生活中的轴对称难点解析练习题(含详解)第3页](http://img-preview.51jiaoxi.com/2/3/12675228/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
北师大版七年级下册第五章 生活中的轴对称综合与测试课时作业
展开
这是一份北师大版七年级下册第五章 生活中的轴对称综合与测试课时作业,共20页。试卷主要包含了下列图标中是轴对称图形的是,下列各图中不是轴对称图形的是等内容,欢迎下载使用。
七年级数学下册第五章生活中的轴对称难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,是轴对称图形的是( )A. B.C. D.2、如图,下列图形中,轴对称图形的个数是( )A.1 B.2 C.3 D.43、下列图形中,不是轴对称图形的是( ).A. B. C. D.4、下列图案中,有且只有三条对称轴的是( )A. B. C. D.5、放风筝是我国人民非常喜爱的一项户外娱乐活动,下列风筝剪纸作品中,不是轴对称图形的是( )A. B.C. D.6、下列图标中是轴对称图形的是( )A. B. C. D.7、下列是部分防疫图标,其中是轴对称图形的是( )A. B. C. D.8、如图,AD,BE,CF依次是ABC的高、中线和角平分线,下列表达式中错误的是( )A.AE=CE B.∠ADC=90° C.∠CAD=∠CBE D.∠ACB=2∠ACF9、下列各图中不是轴对称图形的是( )A. B.C. D.10、下列图案,是轴对称图形的为( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,若P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1、P2,连接P1P2交OA于M,交OB于N,P1P2=24,则△PMN的周长是 ___.若∠MPN=90°,则∠P1PP2的度数为 ___.2、如图,将长方形沿折叠,点落在边上的点处,点落在点处,若,则等于_______(用含的式子表示).3、下列图案是轴对称图形的有 ___个.4、如图所示,其中与甲成轴对称的图形是___________.5、如图,在中,AF是中线,AE是角平分线,AD是高,,,,,则根据图形填空:(1)_________,_________;(2)_________,_________.三、解答题(5小题,每小题10分,共计50分)1、如图,边长为1的正方形网格中,△ABC的三个顶点A、B、C都在格点上.(1)画出△ABC关于x轴的对称图形△DEF(其中点A、B、C的对称点分别是D、E、F),则点D坐标为 .(2)在y轴上找一点P,使得PA+PC最短,请画出点P所在的位置,并写出点P的坐标.2、如图①、图②、图③都是3×3的正方形网格,每个小正方形的顶点称为格点.A,B,C均为格点.在给定的网格中,按下列要求画图:(1)在图①中,画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M、N为格点;(2)在图②中,画一条不与AC重合的线段PQ,使PQ与AC关于某条直线对称,且P,Q为格点;(3)在图③中,画一个△DEF,使△DEF与△ABC关于某条直线对称,且D,E,F为格点.3、如图,已知线段a,利用尺规求作以a为底、以为高的等腰三角形.4、(1)如图1,直线两侧有两点A,B,在直线上求一点C,使它到A、B两点的距离之和最小(作法不限,保留作图痕迹,不写作法).(2)知识拓展:如图2,直线同侧有两点A,B,在直线上求一点C,使它到A,B两点的距离之和最小(作法不限,保留作图痕迹,不写作法).5、如图,在边长为1的正方形网格中有一个ABC,完成下列各图(用无刻度的直尺画图,保留作图痕迹).(1)作ABC关于直线MN对称的A1B1C1;(2)求ABC的面积;(3)在直线MN上找一点P,使得PA+PB最小. -参考答案-一、单选题1、A【分析】根据轴对称图形的定义:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,进行判断即可.【详解】解:A、是轴对称图形,符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意;故选:A.【点睛】本题考查了轴对称图形的识别,熟记定义是解本题的关键.2、B【分析】如果一个图形沿着某条直线对折,直线两旁的部分能够重合,则称这个图形是轴对称图形,这条直线叫做对称轴;根据轴对称图形的概念逐一分析即可判断.【详解】第一、三个图形是轴对称图形,第二、四个图形不是轴对称图形, 故符合题意的有两个;故选:B【点睛】本题考查了轴对称图形的概念,掌握概念是关键.3、A【详解】解:A、不是轴对称图形,故本选项符合题意;B、是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意;故选:A【点睛】本题主要考查了轴对称图形的定义,熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形是解题的关键.4、D【详解】解:A、不是轴对称图形,故不符合题意;B、有四条对称轴,故不符合题意;C、不是轴对称图形,故不符合题意;D、有三条对称轴,故符合题意.故选:D.【点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.5、B【分析】根据轴对称图形的概念求解.在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴.【详解】解:A、是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项符合题意;C、是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项不合题意.故选:B.【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.6、B【详解】解:选项A中的图形不是轴对称图形,故A不符合题意;选项B中的图形是轴对称图形,故B符合题意;选项C中的图形不是轴对称图形,故C不符合题意;选项D中的图形不是轴对称图形,故D不符合题意;故选B【点睛】本题考查的是轴对称图形的识别,轴对称图形的概念:把一个图形沿某条直线对折,对折后直线两旁的部分能够完全重合;掌握“轴对称图形的概念”是解本题的关键.7、C【分析】直接根据轴对称图形的概念分别解答得出答案.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:选项A、B、D均不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项C能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:C.【点睛】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,解题关键是掌握轴对称图形的概念.8、C【分析】根据三角形的高、中线和角平分线的定义(1)三角形的角平分线定义:三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点和交点的线段叫做三角形的角平分线;(2)三角形的中线定义:在三角形中,连接一个顶点和它所对边的中点的连线段叫做三角形的中线;(3)三角形的高定义:从三角形一个顶点向它的对边(或对边所在的直线)作垂线,顶点和垂足间的线段叫做三角形的高线,简称为高.求解即可.【详解】解:A、BE是△ABC的中线,所以AE=CE,故本表达式正确;B、AD是△ABC的高,所以∠ADC=90,故本表达式正确;C、由三角形的高、中线和角平分线的定义无法得出∠CAD=∠CBE,故本表达式错误;D、CF是△ABC的角平分线,所以∠ACB=2∠ACF,故本表达式正确.故选:C.【点睛】本题考查了三角形的高、中线和角平分线的定义,是基础题,熟记定义是解题的关键.9、B【分析】根据关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【详解】解:A、等边三角形是轴对称图形,不合题意;B、平行四边形不是轴对称图形,符合题意;C、正方形是轴对称图形,不符合题意;D、圆是轴对称图形,不合题意;故选:B.【点睛】本题考查了轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10、D【分析】根据轴对称图形的概念对个图形分析判断即可得解.【详解】解:A、此图形不是轴对称图形,不符合题意;B、此图形不是轴对称图形,不合题意;C、此图形是轴对称图形,不合题意;D、此图形是轴对称图形,合题意;故选D.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.二、填空题1、24 【分析】①根据轴对称的性质可得,,然后根据三角形的周长定义求出的周长为P1P2,从而得解;②根据等边对等角可得:,,由三角形外角的性质可得:,,再根据三角形内角和定理得:,最后依据各角之间得数量关系即可求出答案.【详解】解:①如图,∵P点关于OA、OB的对称点P1,P2,∴,,的周长,∵,∴的周长为24;②∵,,∴,,∴,,∵,∴,∴,∴;故①答案为:24;②答案为:.【点睛】题目主要考查轴对称的性质及等腰三角形的性质,三角形外角和定理等知识点,熟练掌握各知识点间的相互联系,融会贯通综合运用是解题关键.2、【分析】根据折叠得出∠DEF=∠HEF,∠EFG=∠EFC,求出∠DEF的度数,根据平行线的性质得出∠DEF+∠EFC=180°,∠BFE=∠DEF,代入即可求出∠EFG,进而求出∠BFG.【详解】解:∵将长方形ABCD沿EF折叠,点D落在AB边上的H点处,点C落在点G处,∴∠DEF=∠HEF,∠EFG=∠EFC,∵∠AEH=m°,∴∠DEF=∠HEF=(180°-∠AEH)=(180°-m°),∵四边形ABCD是长方形,∴AD∥BC,EH∥FG,∴∠DEF+∠EFC=180°,∠BFE=∠DEF=(180°-m°),∴∠EFG=∠EFC=180°-(180°-m°)=90°+m°,∴∠BFG=∠EFG-∠BFE=90°+m°-(180°-m°)=m°,故答案为:m.【点睛】本题考查了平行线的性质,折叠的性质等知识点,根据平行线的性质求出∠BFE=∠DEF和∠DEF+∠EFC=180°是解此题的关键.3、2【分析】根据轴对称图形的概念求解,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】解:第一幅图,是轴对称图形;第二幅图不是轴对称图形;第三幅图是轴对称图形;第四幅图不是轴对称图形;故答案为:2.【点睛】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4、丁【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,进行判断即可.【详解】解:观察图形可知与甲成轴对称的图形是丁,故答案为:丁.【点睛】本题主要考查了轴对称图形的定义,解题的关键在于能够熟练掌握轴对称图形的定义.5、6.5 45 45 【分析】(1)根据三角形高和中线的定义进行求解即可得到答案;(2)根据三角形角平分线的定义进行求解即可【详解】解:(1)在中,AF是中线,∴,∵,,,,AD是高,∴,∴;(2)∵,AE是角平分线,∴,故答案为:6.5,;45,45.【点睛】本题主要考查了三角形高,角平分线和中线的定义,解题的关键在于能够熟练掌握相关知识进行求解.三、解答题1、(1)见解析,(﹣4,﹣4);(2)见解析,(0,2)【分析】(1)先分别作出A、B、C关于x轴的对称点D、E、F,再连接D、E、F三点即可;(2)由上问已知,C点关于y轴的对称点是点,连接A、两点,与y轴的交点即为P点,这时PA+PC最短,求出直线的解析式,即可求出答案.【详解】(1)△ABC关于x轴的对称图形△DEF如图所示:D(﹣4,﹣4);故答案为:(﹣4,﹣4);(2)如图所示:C点关于y轴的对称点是点,连接A、两点,与y轴的交点即为P点,这时PA+PC最短,设直线的解析式为,把,代入得:,解得:,,令,则,.【点睛】本题考查了轴对称变换,掌握轴对称的坐标点特点是解题关键.2、(1)见解析;(2)见解析;(3)见解析.【分析】(1)画线段AB关于大的正方形的对角线对称的线段MN即可;(2)画线段AC关于大的正方形的对角线对称的线段PQ即可;(3)分别确定关于大正方形的对角线的对称点,再顺次连接即可.【详解】解:(1)如图①所示,线段MN是所求作的线段,(2)如图②所示,线段PQ是所求作的线段,(3)如图③所示,是所求作的三角形,【点睛】本题考查的是轴对称的性质与作图,轴对称图案的设计,掌握“先确定好对称轴再画图”是解题的关键.3、见解析【分析】作一条线段等于已知线段,作这条线段的垂直平分线,以线段的中点为端点在线段垂直平分线的一侧上截取长为2a的线段,即可得到所求作的等腰三角形.【详解】解:由题意得所作的满足条件的等腰△ABC如下:【点睛】本题考查了用尺规作等腰三角形,所涉及的基本尺规作图有:作一条线段等于已知线段;作已知线段的垂直平分线.掌握这两个基本作图是关键.4、(1)见解析;(2)见解析【分析】(1)根据两点之间线段最短,连接AB,交已知直线于点C即可;(2)根据两点之间线段最短,作A关于已知直线的对称点E,连接BE交已知直线于C,由此即可得出答案.【详解】解:(1)连接AB,交已知直线于点C,则该点C即为所求;(2)作点A关于已知直线的对称点E,连接BE交已知直线于点C,连接AC,BC,则此时C点符合要求.【点睛】此题主要考查了平面内最短路线问题求法,熟练掌握轴对称图形的性质是解决本题的关键.5、(1)作图见解析;(2);(3)作图见解析【分析】(1)分别作出三个顶点关于直线MN的对称点,再首尾顺次连接即可;(2)用长为2、宽为3的矩形面积减去四周三个直角三角形的面积即可得出答案;(3)连接AB1,与直线MN的交点即为所求.【详解】解:(1)如图所示,△A1B1C1即为所求.(2)S△ABC=2×3﹣2××1×2﹣×1×3=;(3)如图所示,点P即为所求.【点睛】本题主要考查了利用轴对称的性质进行格点作图,准确分析作图是解题的关键.
相关试卷
这是一份沪科版第25章 投影与视图综合与测试课后复习题,共20页。试卷主要包含了下面图形是某几何体的三视图,如图所示的几何体的俯视图是等内容,欢迎下载使用。
这是一份七年级下册第五章 生活中的轴对称综合与测试同步练习题,共20页。
这是一份初中数学北师大版七年级下册第五章 生活中的轴对称综合与测试课时作业,共19页。试卷主要包含了下列图案,是轴对称图形的为等内容,欢迎下载使用。