北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试同步练习题
展开七年级数学下册第四章一元一次不等式和一元一次不等式组综合测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知x=2不是关于x的不等式2x﹣m>4的整数解,x=3是关于x的不等式2x﹣m>4的一个整数解,则m的取值范围为( )
A.0<m<2 B.0≤m<2 C.0<m≤2 D.0≤m≤2
2、下列式子:①5<7;②2x>3;③y≠0;④x≥5;⑤2a+l;⑥;⑦x=1.其中是不等式的有( )
A.3个 B.4个 C.5个 D.6个
3、不符式的解集在数轴上表示正确的是( )
A. B.
C. D.
4、关于的不等式组有解且不超过3个整数解,若,那么的取值范围是( )
A. B. C. D.
5、在数轴上表示不等式的解集正确的是( )
A. B.
C. D.
6、下列判断不正确的是( )
A.若,则 B.若,则
C.若,则 D.若,则
7、已知x=1是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=4不是这个不等式的解,则a的取值范围是( )
A.a<﹣2 B.a≤1 C.﹣2<a≤1 D.﹣2≤a≤1
8、不等式组的解集在数轴上表示正确的是( )
A. B.
C. D.
9、在数轴上表示不等式﹣1<x2,其中正确的是( )
A. B.
C. D.
10、设m是非零实数,给出下列四个命题:①若﹣1<m<0,则<m;②若m>1,<m;③若<m,则m>0;④若>m,则0<m<1,其中是真命题的是( )
A.①② B.①③ C.②③ D.②④
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、 “x的2倍比y小”用不等式表示为 _______.
2、比较大小,用“”或“”填空:
(1)若,且,则_____.
(2)若,为实数,则____.
3、已知a>b,且c≠0,用“>”或“<”填空.
(1)2a________a+b
(2)_______
(3)c-a_______c-b
(4)-a|c|_______-b|c|
4、初三的几位同学拍了一张合影作为留念,已知拍一张底片需要 5 元,洗一张相片需要0.5元.拍一张照片,在每位同学得到一张相片的前提下,平均每人分摊的钱不足1.5元,那么参加合影的同学人数至少为__________.
5、若是关于x的一元一次不等式,则m的值为______________.
三、解答题(5小题,每小题10分,共计50分)
1、用不等式表示:
(1)x与-3的和是负数;
(2)x与5的和的28%不大于-6;
(3)m除以4的商加上3至多为5.
2、解不等式组:,并把其解集在数轴上表示出来.
3、我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[-2.5]=-3;用<a>表示大于a的最小整数,例如:<2.5>=3,<4>=5,<-1.5>=-1.解决下列问题:
(1)[-4.5]= ;<3.5>= ;
(2)若[x]=2,求x的取值范围;若<y>=-1,求y的取值范围.
4、下列式子中,是一元一次不等式的有哪些?
(1)3x+5=0;(2)2x+3>5;(3);(4)≥2;(5)2x+y≤8
5、我市某生态果园今年收获了吨李子和吨桃子,要租用甲、乙两种货车共辆,及时运往外地,甲种货车可装李子吨和桃子吨,乙种货车可装李子吨和桃子吨.
(1)共有几种租车方案?
(2)若甲种货车每辆需付运费元,乙种货车每辆需付运费元,请选出最佳方案,此方案运费是多少.
---------参考答案-----------
一、单选题
1、B
【解析】
【分析】
由2x-m>4得x>,根据x=2不是不等式2x-m>4的整数解且x=3是关于x的不等式2x-m>4的一个整数解得出≥2、<3,解之即可得出答案.
【详解】
解:由2x-m>4得x>,
∵x=2不是不等式2x-m>4的整数解,
∴≥2,
解得m≥0;
∵x=3是关于x的不等式2x-m>4的一个整数解,
∴<3,
解得m<2,
∴m的取值范围为0≤m<2,
故选:B.
【点睛】
本题主要考查了一元一次不等式的整数解,解题的关键是根据不等式整数解的情况得出关于m的不等式.
2、C
【解析】
【分析】
主要依据不等式的定义:用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.
【详解】
解:①②③④⑥均为不等式共5个.
故选:C
【点睛】
本题考查不等式的识别,一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:>、<、≤、≥、≠.
3、D
【解析】
【分析】
先求出不等式的解集,再根据解集在数轴上的表示方法表示即可.
【详解】
解:,
解得:,
在数轴上表示解集为:
,
故选:D.
【点睛】
题目主要考查了求不等式的解集,在数轴上表示不等式的解集,掌握数轴上表示不等式解集的方法是解题的关键.
4、C
【解析】
【分析】
先解不等式组,在根据不超过3个整数解,确定的取值范围,即可得出结论.
【详解】
解:,
解不等式得,
解不等式得,,
因为不等式组有解,故解集为:,
因为不等式组有不超过3个整数解,
所以,,
把代入,,
解得,
故选:C.
【点睛】
本题考查了一元一次不等式组的整数解问题,解题关键是熟练解不等式组,根据有解和整数解的个数列出不等式组.
5、A
【解析】
【分析】
根据在数轴上表示不等式的解集的方法进行判断即可.
【详解】
在数轴上表示不等式的解集如下:
故选:.
【点睛】
本题考查不等式在数轴上的表示,掌握不等式在数轴上的画法是解题的关键.
6、D
【解析】
【分析】
根据不等式得性质判断即可.
【详解】
A. 若,则不等式两边同时加3,不等号不变,选项正确;
B. 若,则不等式两边同时乘-3,不等号改变,选项正确;
C. 若2,则不等式两边同时除2,不等号不变,选项正确;
D. 若,则不等式两边同时乘,有可能,选项错误;
故选:D.
【点睛】
本题考查不等式得性质,需要特别注意不等式两边同时乘(除)一个正数不等号不变,同时乘(除)一个负数不等号改变.
7、A
【解析】
【分析】
根据不等式解的定义列出不等式,求出解集即可确定出a的范围.
【详解】
解:∵x=1是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=4不是这个不等式的解,
∴ 且 ,
即﹣4(﹣2a+2)≤0且﹣(a+2)>0,
解得:a<﹣2.
故选:A.
【点睛】
此题考查了不等式的解集,熟练掌握一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集是解题的关键.
8、C
【解析】
【分析】
根据不等式组的解集的表示方法即可求解.
【详解】
解:∵不等式组的解集为
故表示如下:
故选:C.
【点睛】
本题考查的是一元一次不等式组的解集的表示方法,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
9、A
【解析】
【分析】
不等式﹣1<x≤2在数轴上表示不等式x>﹣1与x≤2两个不等式的公共部分,据此求解即可.
【详解】
解:“>”空心圆圈向右画折线,“≤”实心圆点向左画折线.
故在数轴上表示不等式﹣1<x⩽2如下:
故选A.
【点睛】
本题考查了在数轴上表示不等式的解集,不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
10、A
【解析】
【分析】
根据不等式的性质,逐项判断,即可.
【详解】
解:①若﹣1<m<0,则<m,是真命题;
②若m>1,<m,是真命题;
③若<m,当 时, ,而 ,则原命题是假命题;
④若>m,当 时, ,而 ,则原命题是假命题;
则真命题有①②.
故选:A
【点睛】
本题主要考查了命题的真假,熟练掌握一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可是解题的关键.
二、填空题
1、2x<y##y>2x
【解析】
【分析】
x的2倍即为2x,小即“<”,据此列不等式.
【详解】
解:由题意得,2x<y.
故答案为:2x<y.
【点睛】
本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系是关键.
2、 <
>
【解析】
【分析】
(1)由不等式的性质可得,即可求解.
(2)将两个代数式进行作差,求出差的正负,从而判断出代数式的大小.
【详解】
解:(1),且,
,
,
故答案为:.
(2)
,
.
故答案为:.
【点睛】
本题主要是考察了比较代数式的大小以及不等式的基本性质,常见的比较大小的方法有:作差法、作商法、两边同时平方等,熟练运用合适的方法进行比较,是解决此类题的关键.
3、 > > < <
【解析】
【分析】
(1)根据不等式的性质:不等式两边同时加上一个数,不等号不变号,即可得;
(2)根据不等式的性质:不等式两边同时除以一个正数,不等号不变号,即可得;
(3)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时加上一个数,不等号不变号,即可得;
(4)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时乘以一个正数,不等号不变号,即可得.
【详解】
解:(1)∵,
∴,
即:;
(2)∵,,
∴;
(3)∵,
∴,
∴;
(4)∵,
∴,,
∴;
故答案为:(1)>;(2)>;(3)<;(4)<.
【点睛】
题目主要考查不等式的基本性质,熟练掌握不等式的性质并综合运用是解题关键.
4、6人
【解析】
【分析】
根据题意得出不等关系,即平均每人分摊的钱不足1.5元,由此列一元一次不等式求解即可.
【详解】
解:设参加合影的同学人数为x人,
由题意得:5+0.5x<1.5x,
解得:x>5,
∵x取正整数,
∴参加合影的同学人数至少为6人.
故答案为:6人.
【点睛】
本题考查了一元一次不等式的应用,弄清题意,准确找出不等关系是解题的关键.
5、1
【解析】
【分析】
根据一元一次不等式的定义可得:且,求解即可.
【详解】
解:根据一元一次不等式的定义可得:且
解得
故答案为1
【点睛】
此题考查了一元一次不等式的定义,解题的关键是掌握一元一次不等式的概念.
三、解答题
1、(1)x-3<0;(2)28%(x+5)≤-6;(3)≤5.
【解析】
【分析】
(1)根据负数是小于0的数列不等式即可;
(2)不大于即小于或等于,根据不大于的含义列不等式即可;
(3)至多即小于或等于,根据至多的含义列不等式即可.
【详解】
解:(1)x-3<0;
(2)28%(x+5)≤-6;
(3)≤5.
【点睛】
本题考查的列不等式,列不等式时,应抓住“大于”、“不大于”、“不是”、“至多”、“非负数”等表示不等关系的关键性词语,进而根据这些关键词的内涵列出不等式.在不等式及其应用的题目中,经常会出现一些表示不等关系的词语.正确理解这些关键词很重要.如:若x是非负数,则x≥0;若x是非正数,则x≤0;若x大于y,则有x-y>0;若x小于y,则有x-y<0等.
2、﹣1.5<x≤1,图见解析.
【解析】
【分析】
分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集最后在数轴上表示出不等式组的解集即可.
【详解】
解:
解不等式3x﹣4<5x﹣1,得:x>﹣1.5,
解不等式,得:x≤1,
则不等式组的解集为﹣1.5<x≤1,
将其解集表示在数轴上如下:
【点睛】
本题主要考查了解一元一次不等式组,在数轴上表示出不等式组的解集,解题的关键在于能够熟练掌握求不等式组解集的方法.
3、(1)-5,4;(2)2≤x<3;-2≤y<-1
【解析】
【分析】
(1)根据题目所给信息求解;
(2)根据[2.5]=2,[3]=3,[−2.5]=−3,可得[x]=2中的x的取值,根据<a>表示大于a的最小整数,可得<y>=-1,y的取值.
【详解】
解:(1)由题意得:[-4.5]=−5,<3.5>=4,
故答案为:−5,4;
(2)∵[x]=2,
∴x的取值范围是2≤x<3;
∵<y>=-1,
∴y的取值范围是-2≤y<-1.
【点睛】
本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,根据题目所给的信息进行解答.
4、(2)、(3)是一元一次不等式
【解析】
【分析】
一元一次不等式的定义主要由三部分组成:①不等式的左右两边分母不含未知数;②不等式中只含一个未知数;③未知数的最高次数是1,三个条件缺一不可,根据定义逐一判断即可.
【详解】
解:(1)是等式;(4)不等式的左边不是整式;(5)含有两个未知数,所以不是一元一次不等式,
所以一元一次不等式有:(2)、(3)
【点睛】
本题考查的是一元一次不等式的识别,掌握一元一次不等式的定义是解本题的关键.
5、(1)共有三种方案;(2)租甲,乙两种货车各3辆的方案最佳,运费是5100元.
【解析】
【分析】
(1)本题的不等式关系为:甲车装的李子的重量+乙车装的李子的重量≥15,甲车装的桃子的重量+乙车装的桃子的重量≥8,可根据此不等式关系得出不等式组,求出自变量的取值范围,然后得出符合条件的自变量的值.
(2)根据(1)得出的租车方案,然后分别比较出各种方案的总费用,判定出最佳的方案.
【详解】
解:(1)设安排甲种货车x辆,乙种货车(6-x)辆,
根据题意,得:,
解得:,
∴3≤x≤5.
x取整数有:3,4,5,共有三种方案.
(2)租车方案及其运费计算如下表.
方案 | 甲种车 | 乙种车 | 运费(元) |
一 | 3 | 3 | 1000×3+700×3=5100 |
二 | 4 | 2 | 1000×4+700×2=5400 |
三 | 5 | 1 | 1000×5+700×1=5700 |
答:共有三种租车方案,其中第一种方案最佳,运费是5100元.
【点睛】
本题考查了一元一次不等式组的应用,解题的关键是读懂题意,找到关键描述语,根据:水果的重量≤汽车的运载量列不等式解答.
北京课改版七年级下册第七章 观察、猜想与证明综合与测试课时练习: 这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试课时练习,共20页。试卷主要包含了如图,不能推出a∥b的条件是,下列说法中正确的个数是等内容,欢迎下载使用。
2021学年第七章 观察、猜想与证明综合与测试测试题: 这是一份2021学年第七章 观察、猜想与证明综合与测试测试题,共19页。试卷主要包含了下列语句中叙述正确的有,若的补角是150°,则的余角是,下列语句中,是命题的是等内容,欢迎下载使用。
北京课改版七年级下册第七章 观察、猜想与证明综合与测试练习: 这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试练习,共24页。试卷主要包含了若的余角为,则的补角为等内容,欢迎下载使用。