年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    【高频真题解析】中考数学三年真题模拟 卷(Ⅱ)(含详解)

    【高频真题解析】中考数学三年真题模拟 卷(Ⅱ)(含详解)第1页
    【高频真题解析】中考数学三年真题模拟 卷(Ⅱ)(含详解)第2页
    【高频真题解析】中考数学三年真题模拟 卷(Ⅱ)(含详解)第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【高频真题解析】中考数学三年真题模拟 卷(Ⅱ)(含详解)

    展开

    这是一份【高频真题解析】中考数学三年真题模拟 卷(Ⅱ)(含详解),共25页。试卷主要包含了下列计算正确的是,-6的倒数是,已知ax2+24x+b=等内容,欢迎下载使用。
    中考数学三年真题模拟 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法正确的有(  ①两点之间的所有连线中,线段最短;②相等的角叫对顶角;③过一点有且只有一条直线与已知直线平行;④若ACBC,则点C是线段AB的中点;  ⑤在同一平面内,经过一点有且只有一条直线与已知直线垂直.A.1个 B.2个 C.3个 D.4个2、下列说法正确的是(    A.掷一枚质地均匀的骰子,掷得的点数为3的概率是B.若ACBD为菱形ABCD的对角线,则的概率为1.C.概率很小的事件不可能发生.D.通过少量重复试验,可以用频率估计概率.3、平面直角坐标系中,点P(2,1)关于x轴对称的点的坐标是(    A. B. C. D.4、由抛物线平移得到抛物线则下列平移方式可行的是(    A.向左平移4个单位长度 B.向右平移4个单位长度C.向下平移4个单位长度 D.向上平移4个单位长度5、下列计算正确的是(       A. B.C. D.6、-6的倒数是(  A.-6 B.6 C.±6 D.7、如图,各图形由大小相同的黑点组成,图1中有2个点,图2中有7个点,图3中有14个点,……,按此规律,第6个图中黑点的个数是(  )A.47 B.62 C.79 D.988、如图,ACDF,下列条件中不能判断△ABC≌△DEF的是(    A.EFBC B. C.∠B=∠E D.ABDE9、已知ax2+24xb=(mx﹣3)2,则abm的值是(    A.a=64,b=9,m=﹣8 B.a=16,b=9,m=﹣4C.a=﹣16,b=﹣9,m=﹣8 D.a=16,b=9,m=410、球沿坡角的斜坡向上滚动了5米,此时钢球距地面的高度是(    ).A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、某水果基地为提高效益,对甲、乙、丙三种水果品种进行种植对比研究.去年甲、乙、丙三种水果的种植面积之比为5:3:2,甲、乙、丙三种水果的平均亩产量之比为6:3:5.今年重新规划三种水果的种植面积,三种水果的平均亩产量和总产量都有所变化.甲品种水果的平均亩产量在去年的基础上提高了50%,乙品种水果的平均亩产量在去年的基础上提高了20%,丙品种的平均亩产量不变.其中甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,丙品种水果增加的产量占今年水果总产量的,则三种水果去年的种植总面积与今年的种植总面积之比为______.2、近似数0.0320有_____个有效数字.3、在实数①,②π,③2.131131113,④,⑤0,⑥中,无理数是_____(填序号).4、经过定点AB的圆心轨迹是_____.5、如图,点P内一点,,垂足分别为EF,若,且,则的度数为_________°.三、解答题(5小题,每小题10分,共计50分)1、解下列不等式(组),并把解集在数轴上表示出来;(1)(2)(3)(4)2、在平面直角坐标系中,对于点,将点关于直线对称得到点,当时,将点向上平移个单位,当时,将点向下平移个单位,得到点,我们称点为点关于点的对称平移点.例如,如图已知点,点关于点的对称平移点为(1)已知点①点关于点的对称平移点为________(直接写出答案).②若点为点关于点的对称平移点,则点的坐标为________.(直接写出答案)(2)已知点在第一、三象限的角平分线上,点的横坐标为,点的坐标为.点为点关于点的对称平移点,若以为顶点的三角形围成的面积为1,求的值.3、解方程(1)(2)4、如图①,ADBC相交于点M,点HBD上.求证:小明的部分证明如下:证明:∵同理可得:______,……(1)请完成以上的证明(可用其他方法替换小明的方法);(2)求证:(3)如图②,正方形DEFG的顶点DG分别在的边ABAC上,EF在边BC上,,交DGM,垂足为N,求证:5、疫情期间,小明到口罩厂参加社会实践活动,了解到以下关于口罩生产的信息:无纺布的市场价为13000元/吨,熔喷布的市场价为14700元/吨,2吨无纺布与1吨熔喷布能生产110万片口罩.另外生产口罩的辅料信息(说明:每片口罩需要一只鼻梁条、两条耳带)如表所示: 鼻梁条耳带成本90元/箱230元/箱制作配件数目25000只/箱100000只/箱(1)生产110万片口罩需要鼻梁条         箱,耳带         箱;(2)小明了解到生产和销售口罩的过程中还需支出电费、员工工资、机器损耗及应缴纳的税款等费用.经过统计小明发现每片口罩还需支出上述费用大约0.1548元,求每片口罩的成本是多少元?(3)为控制疫情蔓延,口罩厂接到上级下达的用不超过7天紧急生产销售44万片口罩的任务.经市场预测,100片装大包销售,每包价格为45.8元;10片装小包销售,每包价格为5.8元.该厂每天可包装800大包或2000小包(同一天两种包装方式不能同时进行),且每天需要另外支付2000元费用(不足一天按照一天计费).为在规定时间内完成任务且获得最大利润,该厂设计了三种备选方案,方案一:全部大包销售;方案二:全部小包销售;方案三:同时采用两种包装方式且恰好用7天完成任务.请你通过计算,为口罩厂做出决策. -参考答案-一、单选题1、B【分析】根据线段的性质,对顶角相等的性质,平行公理,对各小题分析判断即可得解.【详解】解:①两点之间的所有连线中,线段最短,正确;②相等的角不一定是对顶角,但对顶角相等,故本小题错误;③过直线外一点有且仅有一条直线与已知直线平行,故本小题错误;④若AC=BC,且ABC三点共线,则点C是线段AB的中点,否则不是,故本小题错误,⑤在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;所以,正确的结论有①⑤共2个.故选:B.【点睛】本题考查了平行公理,线段的性质,对顶角的判断,是基础题,熟记概念与性质是解题的关键.2、B【分析】概率是指事情发生的可能性,等可能发生的事件的概率相同,小概率事件是指发生的概率比较小,不代表不会发生,通过大量重复试验才能用频率估计概率,利用这些对四个选项一次判断即可.【详解】A项:掷一枚质地均匀的骰子,每个面朝上的概率都是一样的都是,故A错误,不符合题意;B项:若ACBD为菱形ABCD的对角线,由菱形的性质:对角线相互垂直平分得知两条线段一定垂直,则 ACBD 的概率为1是正确的,故B正确,符合题意;C项:概率很小的事件只是发生的概率很小,不代表不会发生,故C错误,不符合题意;D项:通过大量重复试验才能用频率估计概率,故D错误,不符合题意.故选B【点睛】本题考查概率的命题真假,准确理解事务发生的概率是本题关键.3、B【分析】直接利用关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,得出答案.【详解】解:点P(2,1)关于x轴对称的点的坐标是(2,-1).故选:B.【点睛】本题主要考查了关于x轴对称点的性质,正确掌握横纵坐标的关系是解题关键.4、A【分析】抛物线的平移规律:上加下减,左加右减,根据抛物线的平移规律逐一分析各选项即可得到答案.【详解】解:抛物线向左平移4个单位长度可得: 故A符合题意;抛物线向右平移4个单位长度可得:故B不符合题意;抛物线向下平移4个单位长度可得: 故C不符合题意;抛物线向上平移4个单位长度可得: 故D不符合题意;故选A【点睛】本题考查的是抛物线图象的平移,掌握“抛物线的平移规律”是解本题的关键.5、D【分析】利用完全平方公式计算即可.【详解】解:A、原式=a2+2ab+b2,本选项错误;B、原式==-a2+2ab-b2,本选项错误;C、原式=a2−2abb2,本选项错误;D、原式=a2+2abb2,本选项正确,故选:D【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.6、D【分析】根据倒数的定义,即可求解.【详解】解:∵-6的倒数是-故选:D.【点睛】本题主要考查了倒数,关键是掌握乘积是1的两数互为倒数.7、A【分析】根据题意得:第1个图中黑点的个数是 ,第2个图中黑点的个数是 ,第3个图中黑点的个数是,第4个图中黑点的个数是 ,……,由此发现,第 个图中黑点的个数是 ,即可求解.【详解】解:根据题意得:第1个图中黑点的个数是第2个图中黑点的个数是第3个图中黑点的个数是第4个图中黑点的个数是……,由此发现,第 个图中黑点的个数是∴第6个图中黑点的个数是故选:A【点睛】本题主要考查了图形类规律题,明确题意,准确得到规律是解题的关键.8、A【分析】利用先证明结合已有的条件 再对每个选项添加的条件逐一分析,即可得到答案.【详解】解:如图, 所以添加EFBC,不能判定△ABC≌△DEF,故A符合题意;延长 添加 ABC≌△DEF,故B,C不符合题意;添加ABDE,能判定△ABC≌△DEF,故D不符合题意;故选A【点睛】本题考查的是添加一个条件判定两个三角形全等,熟练的掌握“利用判定三角形全等”是解本题的关键.9、B【分析】根据完全平方公式展开,进而根据代数式相等即可求解【详解】解:∵ ax2+24xb=(mx﹣3)2故选B【点睛】本题考查了完全平方公式,掌握完全平方公式是解题的关键.10、A【分析】过铅球CCB⊥底面ABB,在Rt△ABC中,AC=5米,根据锐角三角函数sin31°=,即可求解.【详解】解:过铅球CCB⊥底面ABB如图在Rt△ABC中,AC=5米,则sin31°=BC=sin31°×AC=5sin31°.故选择A.【点睛】本题考查锐角三角函数,掌握锐角三角函数的定义是解题关键.二、填空题1、##【分析】设去年甲、乙、丙三种水果的种植面积分别为: 设去年甲、乙、丙三种水果的平均亩产量分别为: 设今年的种植面积分别为: 再根据题中相等关系列方程:①,②,求解: 再利用丙品种水果增加的产量占今年水果总产量的,列方程 求解 从而可得答案.【详解】解: 去年甲、乙、丙三种水果的种植面积之比为5:3:2,设去年甲、乙、丙三种水果的种植面积分别为: 去年甲、乙、丙三种水果的平均亩产量之比为6:3:5,设去年甲、乙、丙三种水果的平均亩产量分别为: 则今年甲品种水果的平均亩产量为: 乙品种水果的平均亩产量为: 丙品种的平均亩产量为 设今年的种植面积分别为: 甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,①,②,解得: 又丙品种水果增加的产量占今年水果总产量的 解得: 所以三种水果去年的种植总面积与今年的种植总面积之比为: 故答案为:【点睛】本题考查的是三元一次方程组的应用,设出合适的未知数与参数,确定相等关系,建立方程组,寻求未知量之间的关系是解本题的关键.2、3【分析】从左边第一个不是零的数字起,到末位数字为止的数的所有数字,都叫做这个数的有效数字,进而得到答案.【详解】解:近似数0.0320有3、2、0等3个有效数字故答案为:3.【点睛】本题考查了近似数的有效数字.解题的关键在于明确:从左边第一个不是零的数字起,到末位数字为止的数的所有数字,都叫做这个数的有效数字.3、②④【分析】根据无理数是无限不循环小数进行判断即可.【详解】解:①﹣是分数,属于有理数;②π是无理数;③2.131131113是有限小数,属于有理数;是无理数;⑤0是整数,属于有理数;=﹣2是有理数;故答案为:②④.【点睛】本题考查了有理数与无理数的定义与分类.解题的关键在于正确理解有理数与无理数的定义与分类.4、线段的垂直平分线【分析】根据到两点的距离相等的点在线段的垂直平分线上可得结论【详解】解:根据到两点的距离相等的点在线段的垂直平分线上可知,经过定点AB的圆心轨迹是线段的垂直平分线故答案为:线段的垂直平分线【点睛】本题考查了垂直平分线的性质判定,理解题意是解题的关键.5、40【分析】根据角平分线的判定定理,可得 ,再由,可得 ,即可求解.【详解】解:∵故答案为:40【点睛】本题主要考查了角平分线的判定定理,直角三角形两锐角互余,熟练掌握再角的内部,到角两边距离相等的点再角平分线上是解题的关键.三、解答题1、(1),数轴见解析(2),数轴见解析(3)-1<x≤2,数轴见解析(4)x≤-10,数轴见解析【分析】(1)去括号,移项,合并同类项,然后把x的系数化为1,最后在数轴上表示即可;(2)去分母,去括号,移项,合并同类项,然后把x的系数化为1,最后在数轴上表示即可;(3)分别计算出两个不等式的解集,再确定出不等式组的解集,最后在数轴上表示;(4)分别计算出两个不等式的解集,再确定出不等式组的解集,最后在数轴上表示;【小题1】解:去括号得:移项合并得:解得:在数轴上表示为:【小题2】去分母得:去括号得:移项合并得:在数轴上表示为:【小题3】由①得:x>-1,由②得:x≤2,不等式组的解集为:-1<x≤2,在数轴上表示为:【小题4】由①得:x<-4,由②得:x≤-10,不等式组的解集为:x≤-10,在数轴上表示为:【点睛】此题主要考查了不等式、不等式组的解法,以及不等式组解集在数轴上的表示方法,利用数形结合得出不等式组的解集是解题关键.2、(1)①(6,4);②(3,-2)(2)的值为【分析】(1)由题意根据点P为点M关于点N的对称平移点的定义画出图形,可得结论;(2)根据题意分两种情形:m>0,m<0,利用三角形面积公式,构建方程求解即可.(1)解:①如图1中,点关于点的对称平移点为故答案为:②若点为点关于点的对称平移点,则点的坐标为故答案为:(2)解:如图2中,当时,四边形是梯形,(舍弃),时,同法可得综上所述,的值为【点睛】本题考查坐标与图形变化-旋转,三角形的面积公式,轴对称,平移变换等知识,解题的关键是理解新定义,学会利用参数构建方程解决问题.3、(1)(2)【分析】(1)先去括号,再移项合并同类项,即可求解;(2)先去分母,再去括号,然后移项合并同类项,即可求解.(1)解:去括号得:移项合并同类项得:解得:(2)解:去分母得:去括号得:移项合并同类项得:解得:【点睛】本题主要考查了解一元一次方程,熟练掌握解一元一次方程的基本步骤是解题的关键.4、(1)见解析(2)见解析(3)见解析【分析】(1)根据题意证明,进而根据相似三角形对应边成比例,列出比例式,进而根据分式的性质化简即可得证;(2)分别过点分别作垂直于,垂足分别为,根据(1)证明高的比的关系,进即可证明(3)根据正方形的性质可得,进而可得,由,根据分式的性质即可证明(1)证明:∵(2)如图,分别过点分别作垂直于,垂足分别为(3)四边形是正方形,【点睛】本题考查了相似三角形的性质与判定,分式的性质,掌握相似三角形的性质与判定是解题的关键.5、(1)44,22(2)0.2元(3)选择方案三,即同时采用两种包装方式且恰好用7天完成任务销售更有利【分析】(1)利用口罩片数×1÷25000;利用口罩片数×2÷100000;(2)无纺布的市场价13000元/吨×2+熔喷布的市场价14700元/吨×1+44箱×90+22箱×230求出总费用.利用总费用÷110万+0.1548即可;(3)方案一:先确定天数天<7.然后口罩包数×45.8-6天费用-成本=利润;方案二:先确定天数天>7天(舍去).;方案三:刚好7天,确定每类加工天数,列一元一次方程设包装小包的天数为x,根据等量关系小包口罩片数×每天完成包数×天数x+大包口罩片数×每天完成包数×(7-小包天数x)=44万,列方程,解方程求.再计算利润=小包数×单价+大包数×单价-其它-成本计算,然后比较利润大小即可(1)解:鼻梁条:1100000÷25000=44箱;耳带:1100000×2÷100000=22箱,故答案为44;22;(2)解:(元).(元).(元).答:每片口罩的成本是0.2元.(3)方案一:全部大包销售:天.(元).方案二:全部小包销售:天>7天(舍去).方案三:设包装小包的天数为x由题意得:解得:(片).=23200+183200-12000-88000,(元).∴选择方案三.答:选择方案三,即同时采用两种包装方式且恰好用7天完成任务销售更有利.【点睛】本题考查有理数的乘除混合运算在生活中运用,一元一次方程的应用,方案设计,掌握有理数的乘除混合运算在生活中运用,一元一次方程的应用,方案设计,仔细阅读题目,分析好各种数据,选择计算方法与应用计算的法则是解题关键. 

    相关试卷

    【历年真题】中考数学三年高频真题汇总卷(含答案详解):

    这是一份【历年真题】中考数学三年高频真题汇总卷(含答案详解),共25页。试卷主要包含了抛物线的顶点坐标是,如图,在中,,,则的值为,下列图形是中心对称图形的是.等内容,欢迎下载使用。

    【高频真题解析】2022年河北省中考数学三年真题模拟 卷(Ⅱ)(含答案及详解):

    这是一份【高频真题解析】2022年河北省中考数学三年真题模拟 卷(Ⅱ)(含答案及详解),共27页。试卷主要包含了已知+=0,则a-b的值是 .,下列说法,下列运算中,正确的是,若,则下列不等式正确的是等内容,欢迎下载使用。

    【高频真题解析】2022年石家庄新华区中考数学三年真题模拟 卷(Ⅱ)(含详解):

    这是一份【高频真题解析】2022年石家庄新华区中考数学三年真题模拟 卷(Ⅱ)(含详解),共24页。试卷主要包含了下列说法中正确的个数是,已知+=0,则a-b的值是 .等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map