【历年真题】:2022年广东省江门市中考数学模拟专项测试 B卷(含详解)
展开
这是一份【历年真题】:2022年广东省江门市中考数学模拟专项测试 B卷(含详解),共21页。试卷主要包含了若,则值为,如果与的差是单项式,那么,下列说法正确的是等内容,欢迎下载使用。
2022年广东省江门市中考数学模拟专项测试 B卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、正八边形每个内角度数为( )A.120° B.135° C.150° D.160°2、质检部门从同一批次1000件产品中随机抽取100件进行检测,检测出次品3件,由此估计这一批次产品中次品件数是( )A.60 B.30 C.600 D.3003、已知关于的分式方程无解,则的值为( )A.0 B.0或-8 C.-8 D.0或-8或-44、下列方程中,关于x的一元二次方程的是( )A.x2-1=2x B.x3+2x2=0 C. D.x2-y+1=05、为迎接建党一百周年,某班50名同学进行了党史知识竞赛,测试成绩统计如下表,其中有两个数据被遮盖.下列关于成绩的统计量中,与被遮盖的数据无关的是( )成绩/分919293949596979899100人数■■1235681012A.平均数,方差 B.中位数,方差C.中位数,众数 D.平均数,众数6、若,则值为( )A. B. C.-8 D.7、在2,1,0,-1这四个数中,比0小的数是( )A.2 B.0 C.1 D.-18、如果与的差是单项式,那么、的值是( )A., B., C., D.,9、下列说法正确的是( )A.的系数是 B.的次数是5次C.的常数项为4 D.是三次三项式10、下列说法正确的是( )A.掷一枚质地均匀的骰子,掷得的点数为3的概率是.B.若AC、BD为菱形ABCD的对角线,则的概率为1.C.概率很小的事件不可能发生.D.通过少量重复试验,可以用频率估计概率.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,从一块直径为2cm的圆形铁皮上剪出一圆心角为90°的扇形,则此扇形的面积为______cm2.2、已知是方程的解,则a的值是______.3、2021年5月11日,国新办举行新闻发布会公布第七次全国人口普查主要数据结果,全国人口共141147万人,请将141147万用科学记数法表示为 ______________.4、如图,在△ABC中,∠ABC=120°,AB=12,点D在边AC上,点E在边BC上,sin∠ADE=,ED=5,如果△ECD的面积是6,那么BC的长是_____.5、如图,∠AOB=62°,OC平分∠AOB,∠COD=90°,则∠AOD=_____度.三、解答题(5小题,每小题10分,共计50分)1、先化简,再求值,其中,,.2、如图,在Rt△ABC中,,cm.点D从A出发沿AC以1cm/s的速度向点C移动;同时,点F从B出发沿BC以2cm/s的速度向点C移动,移动过程中始终保持(点E在AB上).当其中一点到达终点时,另一点也同时停止移动.设移动时间为t(s)(其中).(1)当t为何值时,四边形DEFC的面积为18?(2)是否存在某个时刻t,使得,若存在,求出t的值,若不存在,请说明理由.(3)点E是否可能在以DF为直径的圆上?若能,求出此时t的值,若不能,请说明理由.3、在数轴上,点A表示,点B表示20,动点P、Q分别从A、B两点同时出发.(1)如图1,若P、Q相向而行6秒后相遇,且它们的速度之比是2:3(速度单位:1个单位长度/秒),则点P的速度为 个单位长度/秒,点Q的速度为 个单位长度/秒;(2)如图2,若在原点O处放一块挡板.P、Q均以(1)中的速度同时向左运动,点Q在碰到挡板后(忽略球的大小)改变速度并向相反方向运动,设它们的运动时间为t(秒),试探究:①若点Q两次经过数轴上表示12的点的间隔是5秒,求点Q碰到挡板后的运动速度;②若点Q碰到挡板后速度变为原速度的2倍,求运动过程中P、Q两点到原点距离相等的时间t.4、疫情期间,小明到口罩厂参加社会实践活动,了解到以下关于口罩生产的信息:无纺布的市场价为13000元/吨,熔喷布的市场价为14700元/吨,2吨无纺布与1吨熔喷布能生产110万片口罩.另外生产口罩的辅料信息(说明:每片口罩需要一只鼻梁条、两条耳带)如表所示: 鼻梁条耳带成本90元/箱230元/箱制作配件数目25000只/箱100000只/箱(1)生产110万片口罩需要鼻梁条 箱,耳带 箱;(2)小明了解到生产和销售口罩的过程中还需支出电费、员工工资、机器损耗及应缴纳的税款等费用.经过统计小明发现每片口罩还需支出上述费用大约0.1548元,求每片口罩的成本是多少元?(3)为控制疫情蔓延,口罩厂接到上级下达的用不超过7天紧急生产销售44万片口罩的任务.经市场预测,100片装大包销售,每包价格为45.8元;10片装小包销售,每包价格为5.8元.该厂每天可包装800大包或2000小包(同一天两种包装方式不能同时进行),且每天需要另外支付2000元费用(不足一天按照一天计费).为在规定时间内完成任务且获得最大利润,该厂设计了三种备选方案,方案一:全部大包销售;方案二:全部小包销售;方案三:同时采用两种包装方式且恰好用7天完成任务.请你通过计算,为口罩厂做出决策.5、小明在做作业时发现练习册上一道解方程的题目被墨水污染了,,是被污染的数,他很着急,翻开书后的答案找到这道题的解为:,你能帮他补上“”的数吗?写出你的解题过程. -参考答案-一、单选题1、B【分析】根据正多边形的每一个内角相等,则对应的外角也相等,根据多边形的外角和为360°,进而求得一个外角的度数,即可求得正八边形每个内角度数.【详解】解:∵正多边形的每一个内角相等,则对应的外角也相等,一个外角等于:∴内角为故选B【点睛】本题考查了正多边形的内角与外角的关系,利用外角求内角是解题的关键.2、B【分析】根据样本的百分比为,用1000乘以3%即可求得答案.【详解】解:∵随机抽取100件进行检测,检测出次品3件,∴估计1000件产品中次品件数是故选B【点睛】本题考查了根据样本求总体,掌握利用样本估计总体是解题的关键.3、D【分析】把分式方程转化为整式方程,分分母为零无解,分母为零时,对应的字母值求解.【详解】∵∴,∴,∴,∴当m+4=0时,方程无解,故m= -4;∴当m+4≠0,x=2时,方程无解,∴故m=0;∴当m+4≠0,x= -2时,方程无解,∴故m=-8;∴m的值为0或-8或-4,故选D.【点睛】本题考查了分式方程的无解,正确理解无解的条件和意义是解题的关键.4、A【分析】只含有1个未知数,并且未知数的最高次数为2的整式方程就是一元二次方程,依据定义即可判断.【详解】解:A、只含有一个未知数,未知数的最高次数是2,二次项系数不为0,是一元二次方程,符合题意;B、未知数最高次数是3,不是关于x的一元二次方程,不符合题意;C、为分式方程,不符合题意;D、含有两个未知数,不是一元二次方程,不符合题意故选:A.【点睛】本题考查了一元二次方程的定义,一元二次方程只含有一个未知数,未知数的最高次数是2,为整式方程;特别注意二次项系数不为0.5、C【分析】通过计算成绩为91、92分的人数,进行判断,不影响成绩出现次数最多的结果,因此不影响众数,同时不影响找第25、26位数据,因此不影响中位数的计算,进而进行选择.【详解】解:由表格数据可知,成绩为91分、92分的人数为50-(12+10+8+6+5+3+2+1)=3(人),成绩为100分的,出现次数最多,因此成绩的众数是100,成绩从小到大排列后处在第25、26位的两个数都是98分,因此中位数是98,因此中位数和众数与被遮盖的数据无关,故选:C.【点睛】考查中位数、众数、方差、平均数的意义和计算方法,理解各个统计量的实际意义,以及每个统计量所反应数据的特征,是正确判断的前提.6、C【分析】根据实数的非负性,得a=-2,b=3,代入幂计算即可.【详解】∵,∴a=-2,b=3,∴== -8,故选C.【点睛】本题考查了实数的非负性,幂的计算,熟练掌握实数的非负性是解题的关键.7、D【分析】根据正数大于零,零大于负数,即可求解.【详解】解:在2,1,0,-1这四个数中,比0小的数是-1故选:D【点睛】本题主要考查了有理数的大小比较,熟练掌握正数大于零,零大于负数是解题的关键.8、C【分析】根据与的差是单项式,判定它们是同类项,根据同类项的定义计算即可.【详解】∵与的差是单项式,∴与是同类项,∴n+2=3,2m-1=3,∴m=2, n=1,故选C.【点睛】本题考查了同类项即含有的字母相同,且相同字母的指数也相同,准确判断同类项是解题的关键.9、A【分析】根据单项式的系数、次数的定义以及多项式次数、项数、常数项的定义可解决此题.【详解】解:A、的系数是,故选项正确;B、的次数是3次,故选项错误;C、的常数项为-4,故选项错误;D、是二次三项式,故选项错误;故选A.【点睛】本题主要考查单项式的系数、次数的定义以及多项式次数、项数、常数项的定义,熟练掌握单项式的系数、次数的定义以及多项式次数、项数、常数项的定义是解决本题的关键.10、B【分析】概率是指事情发生的可能性,等可能发生的事件的概率相同,小概率事件是指发生的概率比较小,不代表不会发生,通过大量重复试验才能用频率估计概率,利用这些对四个选项一次判断即可.【详解】A项:掷一枚质地均匀的骰子,每个面朝上的概率都是一样的都是,故A错误,不符合题意;B项:若AC、BD为菱形ABCD的对角线,由菱形的性质:对角线相互垂直平分得知两条线段一定垂直,则 AC⊥BD 的概率为1是正确的,故B正确,符合题意;C项:概率很小的事件只是发生的概率很小,不代表不会发生,故C错误,不符合题意;D项:通过大量重复试验才能用频率估计概率,故D错误,不符合题意.故选B【点睛】本题考查概率的命题真假,准确理解事务发生的概率是本题关键.二、填空题1、【分析】连接AC,根据圆周角定理得出AC为圆的直径,解直角三角形求出AB,根据扇形面积公式进行求解即可.【详解】解:如图,连接AC,∵从一块直径为2cm的圆形铁皮上剪出一个圆心角为90°的扇形,即∠ABC=90°,∴AC为直径,即AC=2cm,AB=BC(扇形的半径相等),∵在中,,∴AB=BC=,∴阴影部分的面积是 (cm2).故答案为:.【点睛】本题考查了圆周角定理和扇形的面积计算,熟记扇形的面积公式是解题的关键.2、4【分析】把代入方程得到关于的一元一次方程,依次去括号,移项,合并同类项,系数化为1,即可得到答案.【详解】解:把代入方程得:,去括号得:,系数化为1得:,故答案为:4.【点睛】本题考查了一元一次方程的解,解题的关键是正确掌握解一元一次方程的方法.3、1.41147×109【分析】绝对值大于1的数可以用科学记数法表示,一般形式为a×10n, 为正整数,且比原数的整数位数少1,据此可以解答.【详解】解:141147万=1411470000=1.41147×109.故答案为:1.41147×109【点睛】本题考查用科学记数法表示较大的数,熟练掌握一般形式为 ,其中, 是正整数,解题的关键是确定 和 的值.4、##【分析】如图,过点E作EF⊥BC于F,过点A作AH⊥CB交CB的延长线于H.解直角三角形求出BH,CH即可解决问题.【详解】解:如图,过点E作EF⊥BC于F,过点A作AH⊥CB交CB的延长线于H.∵∠ABC=120°,∴∠ABH=180°﹣∠ABC=60°,∵AB=12,∠H=90°,∴BH=AB•cos60°=6,AH=AB•sin60°=6,∵EF⊥DF,DE=5,∴sin∠ADE== ,∴EF=4,∴DF===3,∵S△CDE=6,∴ ·CD·EF=6,∴CD=3,∴CF=CD+DF=6,∵tanC==,∴ =,∴CH=9,∴BC=CH﹣BH=9﹣6.故答案为:【点睛】本题主要考查了解直角三角形,根据题意构造合适的直角三角形是解题的关键.5、59【分析】由题意知∠AOD=∠COD∠AOC,∠AOC=∠AOB;计算求解即可.【详解】解:∵OC平分∠AOB∴∠AOC=∠AOB=∴∠AOD=∠COD∠AOC=90°31°=59°故答案为:59.【点睛】本题考查了角平分线与角的计算.解题的关键在于正确的表示各角的数量关系.三、解答题1、abc+4a2c,22.【分析】原式去括号合并得到最简结果,将a、b、c的值代入计算即可求出值.【详解】解:3a2b−[2a2b−(2abc−a2b)−4a2c]−abc=3a2b−(2a2b−2abc+a2b−4a2c)−abc=3a2b−2a2b+2abc-a2b+4a2c −abc=abc+4a2c,当a=−2,b=−3,c=1时,原式=(-2)×(-3)×1+4×(-2)2×1=6+16=22.【点睛】本题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.2、(1)(2)不存在,说明见解析(3)能,【分析】(1)由题意知,四边形为梯形,则,,求t的值,由得出结果即可;(2)假设存在某个时刻t,则有,解得t的值,若,则存在;否则不存在;(3)假设点E在以DF为直径的圆上,则四边形DEFC为矩形,,故有,求t的值,若,则存在;否则不存在.(1)解:∵∴是等腰直角三角形,∵∴,∴是等腰直角三角形,四边形为直角梯形∴∵∴∵∴解得或.∵且∴∴.(2)解:假设存在某个时刻t,使得.∴化简得解得或∵∴不存在某个时刻t,使得.(3)解:假设点E在以DF为直径的圆上,则四边形DEFC为矩形∴,即解得∵∴当时,点E在以DF为直径的圆上.【点睛】本题考查了解一元二次方程,勾股定理,直径所对的圆周角为90°,矩形的性质,等腰三角形等知识点.解题的关键在于正确的表示线段的长度.3、(1)2,3(2)①12个单位长度/秒;②2秒或秒【分析】(1)设P、Q的速度分别为2x,3x,由两点路程之和=两点之间的距离,列方程即可求解;(2)解:①点Q第一次经过表示12的点开始到达原点用时4秒,再次到达表示12的点用时1秒,即可求解;②分两种情况:当P、Q都向左运动时和当Q返回向右运动时即可求解.(1)解:设P、Q的速度分别为2x,3x,由题意,得:6(2x+3x)=20-(-10),解得:x=1,故2x=2,3x=3,故答案为:2,3;(2)解:①,.答:点Q碰到挡板后的运动速度为12个单位长度/秒.②当P、Q都向左运动时,解得:.当Q返回向右运动时,解得:.答:P、Q两点到原点距离相等时经历的时间为2秒或秒.【点睛】本题考查了数轴上两点的距离、数轴上点的表示、一元一次方程的应用,比较复杂,要认真理清题意,并注意数轴上的点,原点左边表示负数,右边表示正数,在数轴上,两点的距离等于任意两点表示的数的差的绝对值.4、(1)44,22(2)0.2元(3)选择方案三,即同时采用两种包装方式且恰好用7天完成任务销售更有利【分析】(1)利用口罩片数×1÷25000;利用口罩片数×2÷100000;(2)无纺布的市场价13000元/吨×2+熔喷布的市场价14700元/吨×1+44箱×90+22箱×230求出总费用.利用总费用÷110万+0.1548即可;(3)方案一:先确定天数天<7.然后口罩包数×45.8-6天费用-成本=利润;方案二:先确定天数天>7天(舍去).;方案三:刚好7天,确定每类加工天数,列一元一次方程设包装小包的天数为x,根据等量关系小包口罩片数×每天完成包数×天数x+大包口罩片数×每天完成包数×(7-小包天数x)=44万,列方程,解方程求出 .再计算利润=小包数×单价+大包数×单价-其它-成本计算,然后比较利润大小即可(1)解:鼻梁条:1100000÷25000=44箱;耳带:1100000×2÷100000=22箱,故答案为44;22;(2)解:(元).(元).(元).答:每片口罩的成本是0.2元.(3)方案一:全部大包销售:天.∴(元).方案二:全部小包销售:天>7天(舍去).方案三:设包装小包的天数为x,由题意得:.解得:.∴(片).∴,=23200+183200-12000-88000,,(元).∵,∴选择方案三.答:选择方案三,即同时采用两种包装方式且恰好用7天完成任务销售更有利.【点睛】本题考查有理数的乘除混合运算在生活中运用,一元一次方程的应用,方案设计,掌握有理数的乘除混合运算在生活中运用,一元一次方程的应用,方案设计,仔细阅读题目,分析好各种数据,选择计算方法与应用计算的法则是解题关键.5、,过程见解析【分析】先将代入方程,进而得到关于“”的方程,解一元一次方程即可求解.【详解】解:的解为即【点睛】本题考查了一元一次方程的解,解一元一次方程,掌握解一元一次方程的步骤是解题的关键.
相关试卷
这是一份【历年真题】2022年广东省揭阳市中考数学历年高频真题专项攻克 B卷(含详解),共25页。试卷主要包含了下列二次根式中,最简二次根式是等内容,欢迎下载使用。
这是一份【历年真题】最新中考数学模拟专项测试 B卷(含答案详解),共19页。试卷主要包含了在中,,,那么的值等于,下列说法中正确的个数是等内容,欢迎下载使用。
这是一份【历年真题】2022年石家庄桥西区中考数学模拟专项测试 B卷(含答案及详解),共28页。试卷主要包含了化简的结果是,在,,, ,中,负数的个数有.,有下列四种说法,下列变形中,正确的是等内容,欢迎下载使用。