【历年真题】:2022年浙江省台州市中考数学模拟真题测评 A卷(含答案详解)
展开
这是一份【历年真题】:2022年浙江省台州市中考数学模拟真题测评 A卷(含答案详解),共19页。试卷主要包含了已知,,且,则的值为,下列关于整式的说法错误的是,下列各点在反比例的图象上的是,已知ax2+24x+b=等内容,欢迎下载使用。
2022年浙江省台州市中考数学模拟真题测评 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一种药品经过两次降价,药价从每盒60元下调至48.6元,设平均每次降价的百分率为x,根据题意所列方程正确的是( )A. B. C. D.2、下列关于x的方程中一定有实数根的是( )A.x2=﹣x﹣1 B.2x2﹣6x+9=0 C.x2+mx+2=0 D.x2﹣mx﹣2=03、某公园改造一片长方形草地,长增加30%,宽减少20%,则这块长方形草地的面积( )A.增加10% B.增加4% C.减少4% D.大小不变4、已知,,且,则的值为( )A.1或3 B.1或﹣3 C.﹣1或﹣3 D.﹣1或35、下列关于整式的说法错误的是( )A.单项式的系数是-1 B.单项式的次数是3C.多项式是二次三项式 D.单项式与ba是同类项6、对于反比例函数,下列结论错误的是( )A.函数图象分布在第一、三象限B.函数图象经过点(﹣3,﹣2)C.函数图象在每一象限内,y的值随x值的增大而减小D.若点A(x1,y1),B(x2,y2)都在函数图象上,且x1<x2,则y1>y27、若关于x的一元二次方程ax2﹣4x+2=0有两个实数根,则a的取值范围是( )A.a≤2 B.a≤2且a≠0 C.a<2 D.a<2且a≠08、下列各点在反比例的图象上的是( )A.(2,-3) B.(-2,3) C.(3,2) D.(3,-2)9、已知ax2+24x+b=(mx﹣3)2,则a、b、m的值是( )A.a=64,b=9,m=﹣8 B.a=16,b=9,m=﹣4C.a=﹣16,b=﹣9,m=﹣8 D.a=16,b=9,m=410、在数-12,π,-3.4,0,+3,中,属于非负整数的个数是( )A.4 B.3 C.2 D.1第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,两个正方形的边长分别为a,b.若a+b=5,ab=5,则图中阴影部分的面积为_____.2、若,,则________.3、如图,从一块直径为2cm的圆形铁皮上剪出一圆心角为90°的扇形,则此扇形的面积为______cm2.4、如图,AC=12cm,AB=5cm,点D是BC的中点,那么CD=________________cm.5、如图,C是线段AB延长线上一点,D为线段BC上一点,且,E为线段AC上一点,,若,则_________.三、解答题(5小题,每小题10分,共计50分)1、已知点P(m,4)在反比例函数的图像上,正比例函数的图像经过点P和点Q(6,n).(1)求正比例函数的解析式;(2)求P、Q两点之间的距离.(3)如果点M在y轴上,且MP=MQ,求点M的坐标.2、姐姐在认真学习的时候,调皮的二宝把姐姐的一道求值题弄污损了,姐姐隐约辨识:化简,其中.系数“”看不清楚了.(1)如果姐姐把“”中的数值看成2,求上述代数式的值;(2)若无论m取任意的一个数,这个代数式的值都是,请通过计算帮助姐姐确定“”中的数值.3、先化简,再求值,其中,,.4、一款电脑原售价4500元,元旦商店搞促销,打八折出售,此时每售出一台电脑仍可获利20%,求:(1)这款电脑的成本价是多少?(2)若按原价出售,商店所获盈利率是多少?5、已知:如图在ABC中,∠BAC=90°,AB=AC,点E在边BC上,∠EAD=90°,AD=AE.求证:(1)ABE≌ACD;(2)如果点F是DE的中点,联结AF、CF,求证:AF=CF. -参考答案-一、单选题1、B【分析】根据等量关系:原价×(1-x)2=现价列方程即可.【详解】解:根据题意,得:,故答案为:B.【点睛】本题考查一元二次方程的应用,找准等量关系列出方程是解答的关键.2、D【分析】分别求出方程的判别式,根据判别式的三种情况分析解答.【详解】解:A、∵x2=﹣x﹣1,∴,∵,∴该方程没有实数根;B、2x2﹣6x+9=0,∵,∴该方程没有实数根;C、x2+mx+2=0,∵,无法判断与0的大小关系,∴无法判断方程根的情况;D、x2﹣mx﹣2=0,∵,∴方程一定有实数根,故选:D.【点睛】此题考查了一元二次方程根的情况,正确掌握判别式的计算方法及根的三种情况是解题的关键.3、B【分析】设长方形草地的长为x,宽为y,则可求得增加后长及减少后的宽,从而可求得现在的面积,与原面积比较即可得到答案.【详解】设长方形草地的长为x,宽为y,则其面积为xy;增加后长为(1+30%)x,减少后的宽为(1-20%)y,此时的面积为(1+30%)x×(1-20%)y=1.04xy,1.04xy−xy=0.04xy,0.04xy÷xy×100%=4%.即这块长方形草地的面积比原来增加了4%.故选:B【点睛】本题考查了列代数式,根据题意设长方形草地的长与宽,进而求得原来的面积及长宽变化后的面积是关键.4、A【分析】由题意利用乘方和绝对值求出x与y的值,即可求出x-y的值.【详解】解:∵,, ,∴x=1,y=-2,此时x-y=3;x=-1,y=-2,此时x-y=1.故选:A.【点睛】此题考查了有理数的乘方,绝对值,以及有理数的减法,熟练掌握运算法则是解本题的关键.5、C【分析】根据单项式系数和次数的定义,多项式的定义,同类项的定义逐一判断即可.【详解】解:A、单项式的系数是-1,说法正确,不符合题意;B、单项式的次数是3,说法正确,不符合题意;C、多项式是三次二项式,说法错误,符合题意;D、单项式与ba是同类项,说法正确,不符合题意;故选C.【点睛】本题主要考查了单项式的次数、系数的定义,多项式的定义,同类项的定义,解题的关键在于能够熟知相关定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数;几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数;同类项的定义:如果两个单项式所含的字母相同,相同字母的指数也相同,那么这两个单项式就叫做同类项.6、D【分析】根据反比例函数的性质得出函数增减性以及所在象限和经过的点的特点分别分析得出即可.【详解】解:A、∵k=6>0,∴图象在第一、三象限,故A选项正确;B、∵反比例函数,∴xy=6,故图象经过点(-3,-2),故B选项正确;C、∵k>0,∴x>0时,y随x的增大而减小,故C选项正确;D、∵不能确定x1和x2大于或小于0∴不能确定y1、y2的大小,故错误;故选:D.【点睛】本题考查了反比例函数(k≠0)的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.7、B【分析】根据方程有两个实数根,可得根的判别式的值不小于0,由此可得关于a的不等式,解不等式再结合一元二次方程的定义即可得答案【详解】解:根据题意得a≠0且Δ=(−4)2−4•a•2≥0,解得a≤2且a≠0.故选:B.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2−4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.8、C【分析】根据反比例函数图象上点的坐标特征对各选项进行判断.【详解】解:∵2×(−3)=−6,−2×3=−6,3×(−2)=−6, 而3×2=6,∴点(2,−3),(−2,3)(3,−2),不在反比例函数图象上,点(3,2)在反比例函数图象上.故选:C.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.9、B【分析】将根据完全平方公式展开,进而根据代数式相等即可求解【详解】解:∵ ,ax2+24x+b=(mx﹣3)2,∴即故选B【点睛】本题考查了完全平方公式,掌握完全平方公式是解题的关键.10、C【分析】非负整数即指0或正整数,据此进行分析即可.【详解】解:在数-12,π,-3.4,0,+3,中,属于非负整数的数是:0,+3,共2个,故选:C.【点睛】本题主要考查了有理数.明确非负整数指的是正整数和0是解答本题的关键.二、填空题1、2.5【分析】先利用阴影部分的面积等于大的正方形的面积的一半减去三个三角形的面积得到阴影面积为:,再利用完全平方公式的变形求解面积即可.【详解】解: 两个正方形的边长分别为a,b, a+b=5,ab=5, 故答案为:【点睛】本题考查的是完全平方公式在几何图形中的应用,利用完全平方公式的变形求解代数式的值,掌握“”是解本题的关键.2、12【分析】由变形为,再把和代入求值即可.【详解】解:,,.故答案为:12.【点睛】本题主要考查幂的乘方与积的乘方,解题的关键是将变形为.3、【分析】连接AC,根据圆周角定理得出AC为圆的直径,解直角三角形求出AB,根据扇形面积公式进行求解即可.【详解】解:如图,连接AC,∵从一块直径为2cm的圆形铁皮上剪出一个圆心角为90°的扇形,即∠ABC=90°,∴AC为直径,即AC=2cm,AB=BC(扇形的半径相等),∵在中,,∴AB=BC=,∴阴影部分的面积是 (cm2).故答案为:.【点睛】本题考查了圆周角定理和扇形的面积计算,熟记扇形的面积公式是解题的关键.4、【分析】首先根据线段的和差求出BC的长,再利用线段的中点可得CD.【详解】∵AC=12cm,AB=5cm,∴BC=AC﹣AB=7cm,∵点D是BC的中点,∴CD=BC=cm.故答案为:.【点睛】本题考查线段的和差,掌握线段中点的定义是解题关键.5、3【分析】设BD=a,AE=b,则CD=2a,CE=2b,根据AB=AE+BE=AE+DE-BD代入计算即可.【详解】设BD=a,AE=b,∵,,∴CD=2a,CE=2b,∴DE=CE-CD=2b-2a=2即b-a=1,∴AB=AE+BE=AE+DE-BD=2+b-a=2+1=3,故答案为:3.【点睛】本题考查了线段的和与差,正确用线段的和差表示线段是解题的关键.三、解答题1、(1)(2)5(3)【分析】(1)先将点的坐标代入反比例函数解析式求得的值,再待定系数法求正比例函数解析式即可;(2)根据正比例函数解析式求得点的坐标,进而两点距离公式求解即可;(3)根据题意作的垂直平分线,设,勾股定理建立方程,解方程求解即可.(1)解:∵点P(m,4)在反比例函数的图像上,∴解得设正比例函数为将点代入得正比例函数为(2)将点Q(6,n)代入,得(3)如图,设的中点为,过点作交轴于点,设则,即是直角三角形即解得【点睛】本题考查了正比例函数与反比例函数综合,待定系数法求解析式,勾股定理求两点之间的距离,垂直平分线的性质,综合运用以上知识是解题的关键.2、(1)-4(2)4【分析】(1)化简并求值即可;(2)设中的数值为x,然后化简原式,根据题意,含m的项的系数为0即可求得x的值.(1)原式.当时,原式;(2)设中的数值为x,则原式.∵无论m取任意的一个数,这个代数式的值都是,∴.∴.即“”中的数是4.【点睛】本题考查了整式的加减运算及求代数式的值,整式加减的实质是去括号、合并同类项,注意去括号时,当括号前是“-”时,去掉括号及括号前的“-”后,括号里的各项都要变号.3、abc+4a2c,22.【分析】原式去括号合并得到最简结果,将a、b、c的值代入计算即可求出值.【详解】解:3a2b−[2a2b−(2abc−a2b)−4a2c]−abc=3a2b−(2a2b−2abc+a2b−4a2c)−abc=3a2b−2a2b+2abc-a2b+4a2c −abc=abc+4a2c,当a=−2,b=−3,c=1时,原式=(-2)×(-3)×1+4×(-2)2×1=6+16=22.【点睛】本题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.4、(1)3000元(2)50%【分析】(1)设这款电脑的成本价是x元,根据售价×折扣=成本×(1+利润率)列方程求出x的值即可得答案;(2)根据利润率=(售价-进价)÷进价×100%列式计算即可得答案.(1)设这款电脑的成本价是x元,∵原售价4500元,打八折出售,此时每售出一台电脑仍可获利20%,∴4500×80%=x(1+20%),解得:x=3000.答:这款电脑的成本价是3000元.(2)(4500-3000)÷3000=50%.答:若按原价出售,商店所获盈利率是50%.【点睛】本题考查一元一次方程的应用,正确得出等量关系是解题关键.5、(1)见解析(2)见解析【分析】(1)根据SAS证明即可;(2)由∠BAC=90°,AB=AC,得到∠B=∠ACB=,根据全等三角形的性质得到∠ACD=∠B=,求出∠DCE=,利用直角三角形斜边中线的性质得到DE=2CF,DE=2AF,由此得到结论.(1)证明:∵∠BAC=90°,∠EAD=90°,∴∠BAC=∠EAD,∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD,在ABE和ACD中,,∴ABE≌ACD(SAS);(2)证明:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=,∵ABE≌ACD,∴∠ACD=∠B=,∴∠BCD=,∴∠DCE=,∵点F是DE的中点,∴DE=2CF,∵∠EAD=90°,∴DE=2AF,∴AF=CF..【点睛】此题考查了等腰直角三角形的性质,全等三角形的判定及性质,直角三角形斜边中线等于斜边一半的性质,熟记各知识点并综合应用是解题的关键.
相关试卷
这是一份【历年真题】最新中考数学模拟真题练习 卷(Ⅱ)(含答案详解),共22页。
这是一份【历年真题】最新中考数学真题模拟测评 (A)卷(含答案及详解),共25页。试卷主要包含了点P,二次函数y=等内容,欢迎下载使用。
这是一份【历年真题】2022年山东省济南市中考数学模拟真题测评 A卷(含答案及详解),共24页。试卷主要包含了有下列说法等内容,欢迎下载使用。