初中数学北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试巩固练习
展开
这是一份初中数学北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试巩固练习,共20页。试卷主要包含了不等式组的最小整数解是,已知a>b,则下列选项不正确是等内容,欢迎下载使用。
七年级数学下册第四章一元一次不等式和一元一次不等式组专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若a>b,则下列不等式不正确的是( )A.﹣5a>﹣5b B. C.5a>5b D.a﹣5>b﹣52、关于x的方程3﹣2x=3(k﹣2)的解为非负整数,且关于x的不等式组有解,则符合条件的整数k的值之和为( )A.5 B.4 C.3 D.23、关于x的方程3﹣2x=3(k﹣2)的解为非负整数,且关于x的不等式组无解,则符合条件的整数k的值的和为( )A.5 B.2 C.4 D.64、不等式组的最小整数解是( )A.5 B.0 C. D.5、﹣(﹣a)和﹣b在数轴上表示的点如图所示,则下列判断正确的是( )A.﹣a<1 B.b﹣a>0 C.a+1>0 D.﹣a﹣b<06、若实数a,b满足a>b,则下列不等式一定成立的是( )A.a>b+2 B.a﹣1>b﹣2 C.﹣a>﹣b D.a2>b27、已知a>b,则下列选项不正确是( )A.a+c>b+c B.a﹣b>0 C. D.a•c2≥b•c28、如果,m,这三个实数在数轴上所对应的点从左到右依次排列,那么m的取值范围是( )A. B. C. D.9、如果关于x的不等式组有且只有3个奇数解,且关于y的方程3y+6a=22-y的解为非负整数,则符合条件的所有整数a的积为( )A.-3 B.3 C.-4 D.410、已知 a<b,则( )A.a﹣2>b﹣2 B.﹣a+1>﹣b+1 C.ac<bc D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若关于x的不等式2x-a≤4有3个非负整数解,则a的取值范围是_______.2、若不等式组的解集为,则的取值范围为__________.3、用不等式表示下列各语句所描述的不等关系:(1)a的绝对值与它本身的差是非负数________;(2)x与-5的差不大于2________;(3)a与3的差大于a与a的积________;(4)x与2的平方差是—个负数________.4、把一堆花生分给一群猴子,如果每只猴子分3颗,就剩8颗;如果每只猴子分5颗,那么最后一只猴子分到的花生不足5颗.求猴子的只数与花生的颗数分别为________.5、已知那么|x-3|+|x-1|=_____.三、解答题(5小题,每小题10分,共计50分)1、解下列不等式(组):(1)(2)2、为了打造区域中心城市,实现跨越式发展,某市花城新区建设正按投资计划有序推进.花城新区建设工程部因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机的有关信息如下表所示:型号租金(单位:元/台·时)挖掘土石方量(单位:m3/台·时)甲型10060乙型12080(1)用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机分别需要租多少台?(2)每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有哪几种不同的租用方案(每种型号的挖掘机至少租一台)?3、解不等式组,并求出它的所有整数解的和.4、解不等式(组):(1);(2).5、(1)若x>y,比较﹣3x+5与﹣3y+5的大小,并说明理由;(2)解不等式组:,并把它的解集在数轴上表示出来. ---------参考答案-----------一、单选题1、A【解析】【分析】根据不等式的基本性质逐项判断即可得.【详解】解:A、不等式两边同乘以,改变不等号的方向,则,此项不正确;B、不等式两边同除以5,不改变不等号的方向,则,此项正确;C、不等式两边同乘以5,不改变不等号的方向,则,此项正确;D、不等式两边同减去5,不改变不等号的方向,则,此项正确;故选:A.【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题关键.2、A【解析】【分析】先求出方程的解与不等式组的解集,再根据题意相确定的取值范围即可.【详解】解:解方程3﹣2x=3(k﹣2),得:,由题意得,解得:,解不等式,得:, 解不等式,得:,不等式组有解,,则,符合条件的整数的值的和为,故选A.【点睛】本题主要考查了一元一次方程的解、一元一次不等式组的整数解等知识点,明确题意、正确求解不等式成为解答本题的关键.3、C【解析】【分析】先求出3﹣2x=3(k﹣2)的解为x,从而推出,整理不等式组可得整理得:,根据不等式组无解得到k>﹣1,则﹣1<k≤3,再由整数k和是整数进行求解即可.【详解】解:解方程3﹣2x=3(k﹣2)得x,∵方程的解为非负整数,∴0,∴,把整理得:,由不等式组无解,得到k>﹣1,∴﹣1<k≤3,即整数k=0,1,2,3,∵是整数,∴k=1,3,综上,k=1,3,则符合条件的整数k的值的和为4.故选C.【点睛】本题主要考查了解一元一次方程,根据一元一次不等式组的解集情况求参数,解题的关键在于能够熟练掌握相关知识进行求解.4、C【解析】【分析】分别求出各不等式的解集,再求出其公共解集,然后求出最小整数解即可.【详解】解:解不等式,得:,解不等式,得:,故不等式组的解集为:,则该不等式组的最小整数解为:.故选:C.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5、B【解析】【分析】化简﹣(﹣a)=a,根据数轴得到a<﹣1<﹣b<0,再结合有理数的加减、不等式的性质逐项分析可得答案.【详解】解:﹣(﹣a)=a,由数轴可得a<﹣1<﹣b<0,∵a<﹣1,∴﹣a>1,故A选项判断错误,不合题意;∵﹣b<0,∴b>0,b﹣a>0,故B正确,符合题意;∵a<﹣1,∴a+1<0,故C判断错误,不合题意;∵a<﹣b,∴a+b<0,∴﹣a﹣b>0,故D判断错误,不合题意.故选:B.【点睛】本题考查了有理数的加减法则、不等式的性质、用数轴表示数等知识,熟知相关知识并根据题意灵活应用是解题关键.6、B【解析】【分析】根据不等式的性质即可依次判断.【详解】解:当a>b时,a>b+2不一定成立,故错误;当a>b时,a﹣1>b﹣1>b﹣2,成立,当a>b时,﹣a<﹣b,故错误;当a>b时,a2>b2不一定成立,故错误;故选:B.【点睛】本题主要考查了不等式的性质的灵活应用,解题的关键是基本知识的熟练掌握.7、C【解析】【分析】由题意直接根据不等式的性质对各个选项进行分析判断即可.【详解】解:A.∵a>b,∴a+c>b+c,故本选项不符合题意;B.∵a>b,∴a﹣b>b﹣b,∴a﹣b>0,故本选项不符合题意;C.∵a>b,∴,故本选项符合题意;D.∵a>b,c2≥0,∴a•c2≥b•c2,故本选项不符合题意;故选:C.【点睛】本题考查不等式的性质,能够正确利用不等式的性质是解题的关键,注意不等式两边同时乘除一个负数要改变不等号的方向.8、C【解析】【分析】如果2m,m,这三个实数在数轴上所对应的点从左到右依次排列,则可得三个数的大小关系,列出相应的不等式组进行求解,然后根据确定不等式组解集方法(同大取大,同小取小),即可解得m的范围.【详解】解:根据题意得:,解①得:,解②得:,解③得:,∴m的取值范围是.故选:C.【点睛】题目主要考查不等式组的应用及解法,理解题意,列出相应的不等式组,熟练掌握确定不等式组解集的方法是解题关键.9、A【解析】【分析】先求解不等式组,根据解得范围确定的范围,再根据方程解的范围确定的范围,从而确定的取值,即可求解.【详解】解:由关于x的不等式组解得∵关于x的不等式组有且只有3个奇数解∴,解得关于y的方程3y+6a=22-y,解得∵关于y的方程3y+6a=22-y的解为非负整数∴,且为整数解得且为整数又∵,且为整数∴符合条件的有、、符合条件的所有整数a的积为故选:A【点睛】本题主要考查一元一次不等式组的解法及一元一次方程的解法,熟练掌握一元一次不等式组的解法及一元一次方程的解法是解题的关键.10、B【解析】【分析】根据不等式的性质逐项分析即可.【详解】解:A、∵a<b,∴a-2<b-2,故不符合题意; B、∵a<b,∴-a>-b,∴-a+1>-b+1,,故符合题意; C、∵a<b,当c≤0时,ac<bc不成立,故不符合题意; D、∵a<b,当c>0时,不成立,故不符合题意;故选B.【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.二、填空题1、【解析】【分析】由不等式2x-a≤4得,根据不等式有3个非负整数解知2≤<3,求解可得.【详解】解:解不等式2x-a≤4,得:,∵不等式有3个非负整数解,∴2≤<3,解得,故答案为:.【点睛】本题主要考查一元一次不等式的整数解,根据不等式有3个非负整数解得出的范围是解题的关键.2、【解析】【分析】先解一元一次不等式组中的两个不等式,再根据解集为,可得,从而可得答案.【详解】解:由①得: 由②得: 不等式组的解集为, 故答案为:【点睛】本题考查的是一元一次不等式组的解法,利用一元一次不等式组的解集求解参数的取值范围,掌握一元一次不等式组的解法是解题的关键.3、 |a|-a≥0 x-(-5)≤2 【解析】【分析】(1)a的绝对值表示为:,根据与它本身的差是非负数,即可列出不等式;(2)x与-5的差表示为:,不大于2表示为:,综合即可列出不等式;(3)a与3的差表示为:,大于a与a的积表示为:,综合即可列出不等式;(4)x与2的平方差表示为:,负数表示为:,综合即可列出不等式.【详解】解:(1)a的绝对值表示为:,与它本身的差是非负数,可得:;(2)x与-5的差表示为:,不大于2表示为:,可得:;(3)a与3的差表示为:,大于a与a的积表示为:,可得:;(4)x与2的平方差表示为:,负数表示为:,可得:;故答案为:①;②;③;④.【点睛】题目主要考查不等式的应用,依据题意,理清不等关系,列出相应不等式是解题关键.4、5只和23颗或6只和26颗.【解析】【分析】设猴子的只数为x只,根据题意列出不等式组,求整数解即可.【详解】解:设猴子的只数为x只,根据题意列出不等式组得,,解得,,因为x为整数是,所以,或,花生的颗数为颗或颗故答案为:5只和23颗或6只和26颗.【点睛】本题考查了一元一次不等式组的应用,解题关键是准确把握题目中的不等量关系,列出不等式组.5、2【解析】【分析】先求出不等式组的解集,再根据x的取值化简绝对值即可求解.【详解】解:解不等式①得, 解不等式②得, ∴不等式组的解集为: ,∴x-3<0,x-1>0, ∴.故答案为:2【点睛】本题考查了求不等式组的解集和绝对值的化简,正确求出不等式组的解集,正确化简绝对值是解题关键.三、解答题1、(1)x<;(2)1≤x<3【解析】【分析】(1)去括号,移项合并,系数化为1即可求解;(2)分别求出各不等式的解集,再求出其公共解集即可.【详解】解:(1)去括号得,x-1>6x+18,移项合并同类项得:5x<-19,系数化为1得:x<;(2),由①得,x≥1,由②得,x<3,故不等式组的解集为:1≤x<3.【点睛】本题考查了解一元一次不等式,以及一元一次不等式组,熟练掌握求不等式解集的步骤是解答此题的关键.2、(1)甲种型号的挖掘机需要租5台,乙种型号的挖掘机需要租3台;(2)共有一种租用方案,即甲种型号的挖掘机租1台,乙种型号的挖掘机租6台.【解析】【分析】(1)设甲种型号的挖掘机需要租台,从而可得乙种型号的挖掘机需要租台,再根据“恰好完成每小时的挖掘量”建立方程,解方程即可得;(2)设甲种型号的挖掘机租台,乙种型号的挖掘机租台,根据“每小时支付的租金不超过850元,又恰好完成每小时的挖掘量”建立不等式和方程,再结合为正整数进行分析即可得.【详解】解:(1)设甲种型号的挖掘机需要租台,则乙种型号的挖掘机需要租台,由题意得:,解得,答:甲种型号的挖掘机需要租5台,乙种型号的挖掘机需要租3台;(2)设甲种型号的挖掘机租台,乙种型号的挖掘机租台,由题意得:,解得,,因为为正整数,所以分以下四种情况进行讨论:①当时,,符合题意;②当时,,不符题意,舍去;③当时,,不符题意,舍去;④当时,,不符题意,舍去;综上,共有一种租用方案,即甲种型号的挖掘机租1台,乙种型号的挖掘机租6台.【点睛】本题考查了一元一次方程的应用、一元一次不等式的应用,正确建立方程和不等式是解题关键.3、﹣2≤x<,所有整数解的和是0.【解析】【分析】先求出两个不等式的解集,再求其公共解,然后写出范围内的整数.【详解】解:解不等式①得,x≥﹣2,解不等式②得,x<,∴不等式组的解集是﹣2≤x<,∴原不等式组的整数解是-2,﹣1,0,1,2,∴它的所有整数解的和是﹣2﹣1+0+1+2=0.【点睛】本题主要考查了一元一次不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值,一般方法是先解不等式组,再根据解集求出特殊值.4、(1);(2)【解析】【分析】(1)把不等式转化为一元一次不等式后再求解;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集即可.【详解】解:(1),,,,解得:;(2),由①得:,由②得:,则不等式组的解集为.【点睛】本题考查了解一元一次不等式组,解题的关键是熟练掌握运算法则.5、(1)﹣3x+5<﹣3y+5;(2)﹣1<x≤2,数轴上表示见解析.【解析】【分析】(1)先在x>y的两边同乘以−3,变号,再在此基础上同加上5,不变号,即可得出结果;(2)分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.【详解】解:(1)∵x>y,∴不等式两边同时乘以−3得:(不等式的基本性质3)−3x<−3y,∴不等式两边同时加上5得:5−3x<5−3y;∴﹣3x+5<﹣3y+5;(2),∵解不等式①,得x≤2,解不等式②,得x>﹣1,∴原不等式组的解集为:﹣1<x≤2,在数轴上表示不等式组的解集为: 【点睛】主要考查了不等式的基本性质和解一元一次不等式组,熟知“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则是解答此题的关键.
相关试卷
这是一份数学七年级下册第六章 整式的运算综合与测试习题,共19页。试卷主要包含了计算的结果是,下列运算正确的是,下列结论中,正确的是等内容,欢迎下载使用。
这是一份初中北京课改版第六章 整式的运算综合与测试课后练习题,共18页。试卷主要包含了已知整数,下列说法中,已知,,则,下列各式中,计算正确的是,下列运算不正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试课时作业,共17页。试卷主要包含了如果点P,下列式子,如图,下列结论正确的是,下列不等式一定成立的是等内容,欢迎下载使用。