初中数学北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试精练
展开
这是一份初中数学北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试精练,共18页。试卷主要包含了下列不等式组,无解的是,若m<n,则下列各式正确的是,下列判断正确的是,关于x的不等式等内容,欢迎下载使用。
七年级数学下册第四章一元一次不等式和一元一次不等式组难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、关于x的分式方程的解是正数,则字母m的取值范围是( )A. B. C.且 D.且2、下列说法正确的是( )A.若a<b,则3a<2b B.若a>b,则ac2>bc2C.若﹣2a>2b,则a<b D.若ac2<bc2,则a<b3、如果关于x的方程ax﹣3(x+1)=1﹣x有整数解,且关于y的不等式组有解,那么符合条件的所有整数a的个数为( )A.3 B.4 C.5 D.64、下列不等式组,无解的是( )A. B. C. D.5、若m<n,则下列各式正确的是( )A.﹣2m<﹣2n B. C.1﹣m>1﹣n D.m2<n26、有两个正数a,b,且a<b,把大于等于a且小于等于b的所有数记作[a,b].例如,大于等于1且小于等于4的所有数记作[1,4].若整数m在[5,15]内,整数n在[﹣30,﹣20]内,那么的一切值中属于整数的个数为( )A.6个 B.5个 C.4个 D.3个7、下列判断正确的是( )A.由,得 B.由,得C.由,得 D.由,得8、在数轴上表示不等式﹣1<x2,其中正确的是( )A. B.C. D.9、关于x的不等式(m-1)x>m-1可变成形为x<1,则( )A.m<-1 B.m>-1 C.m>1 D.m<110、在数轴上表示不等式的解集正确的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、不等式的解集是______.2、 “x的2倍减去y的差是非正数”用不等式表示为_______.3、a,b两个实数在数轴上的对应点如图所示:用“<”或“>”填空:(1)a______b;(2)_____;(3)______0;(4)______0;(5)______;(6)______a.4、 “a的2倍与的差小于5用不等式表示__________________.5、关于的不等式的解集是,则关于的不等式的解集是___ .三、解答题(5小题,每小题10分,共计50分)1、某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖的纸盒.(1)现有正方形纸板162张,长方形纸板340张,若要做两种纸盒共100个,设竖式纸盒x个,需要长方形纸板________________张,正方形纸板_____________张(请用含有x的式子)(2)在(1)的条件下,有哪几种生产方案?(3)若有正方形纸板162张,长方形纸板a张,做成上述两种纸盒,纸板恰好用完.已知290<a<300,求a的值.2、(1)解不等式:3x﹣2≤5x,并把解集在数轴上表示出来.(2)解不等式组,并写出它的最大整数解.3、将下列不等式写成或的形式,并把解集表示在数轴上.(1)(2)4、根据“a的2倍与1的差是负数”列出不等式:_________.5、求不等式64-11x>4的正整数解. ---------参考答案-----------一、单选题1、A【解析】【分析】解分式方程,得到含字母m的方程,解此方程,再根据该方程的解是整数,结合分式方程的分母不为零,得到两个关于字母m的不等式,解之即可.【详解】解:方程两边同时乘以(x+1),得到因为分式方程的解是正数, 故选:A.【点睛】本题考查分式方程的解、解一元一次不等式等知识,难度较易,掌握相关知识是解题关键.2、D【解析】【分析】利用不等式的性质,即可求解.【详解】解:A、若a<b,则3a<3b,故本选项错误,不符合题意; B、若a>b,当c=0时,则ac2=bc2,故本选项错误,不符合题意; C、若﹣2a>﹣2b,则a<b,故本选项错误,不符合题意; D、若ac2<bc2,则a<b,故本选项正确,符合题意; 故选:D【点睛】本题主要考查了不等式的性质,熟练掌握不等式的性质是解题的关键.3、C【解析】【分析】先解关于y的不等式组可得解集为,根据关于y的不等式组有解可得,由此可得,再解关于x的方程可得解为,根据关于x的方程ax﹣3(x+1)=1﹣x有整数解可得的值为整数,由此可求得整数a的值,由此即可求得答案.【详解】解:,解不等式①,得:,解不等式②,得:,∴不等式组的解集为,∵关于y的不等式组有解,∴,解得:,∵ax﹣3(x+1)=1﹣x,∴ax﹣3x﹣3=1﹣x,∴ax﹣3x+x=1+3,∴(a﹣2)x=4,∵关于x的方程ax﹣3(x+1)=1﹣x有整数解,a为整数,∴a﹣2=4,2,1,﹣1,﹣2,﹣4,解得:a=6,4,3,1,0,﹣2,又∵,∴a=4,3,1,0,﹣2,∴符合条件的所有整数a的个数为5个,故选:C【点睛】此题考查了解一元一次不等式组、解一元一次方程,熟练掌握相关运算法则是解本题的关键.4、D【解析】【分析】根据不等式组的解集的求解方法进行求解即可.【详解】解:A、,解得,解集为:,故不符合题意;B、,解得,解集为:,故不符合题意;C、,解得,解集为:,故不符合题意;D、,解得,无解,符合题意;故选:D.【点睛】本题考查了求不等式组的解集,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”取不等式组的解集是关键.5、C【解析】【分析】根据不等式的基本性质逐项判断即可.【详解】解:A:∵m<n,∴﹣2m>﹣2n,∴不符合题意;B:∵m<n,∴,∴不符合题意;C:∵m<n,∴﹣m>﹣n,∴1﹣m>1﹣n,∴符合题意;D: m<n,当时,m2>n2,∴不符合题意;故选:C.【点睛】本题主要考查了不等式的基本性质,熟练掌握不等式的3条基本性质是解题关键.6、B【解析】【分析】根据已知条件得出5≤m≤15,−30≤n≤−20,再得出的范围,即可得出整数的个数.【详解】解:∵m在[5,15]内,n在[−30,−20]内,∴5≤m≤15,−30≤n≤−20,∴−≤≤,即−6≤≤−,∴的一切值中属于整数的有−2,−3,−4,−5,−6,共5个;故选:B.【点睛】此题考查了不等式组的应用,求出5≤m≤15和−30≤n≤−20是解题的关键.7、D【解析】【分析】根据一元一次不等式的解法逐项判断即可得.【详解】解:A、由,得,则此项错误;B、由,得,则此项错误;C、由,得,则此项错误;D、由,得,则此项正确;故选:D.【点睛】本题考查了解一元一次不等式,熟练掌握不等式的解法是解题关键.8、A【解析】【分析】不等式﹣1<x≤2在数轴上表示不等式x>﹣1与x≤2两个不等式的公共部分,据此求解即可.【详解】解:“>”空心圆圈向右画折线,“≤”实心圆点向左画折线.故在数轴上表示不等式﹣1<x⩽2如下:故选A.【点睛】本题考查了在数轴上表示不等式的解集,不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9、D【解析】【分析】根据不等式的基本性质3求解即可.【详解】解:∵关于x的不等式(m-1)x>m-1的解集为x<1,∴m-1<0,则m<1,故选:D.【点睛】本题主要考查解一元一次不等式,解题的关键是掌握不等式的基本性质3.10、A【解析】【分析】根据在数轴上表示不等式的解集的方法进行判断即可.【详解】在数轴上表示不等式的解集如下:故选:.【点睛】本题考查不等式在数轴上的表示,掌握不等式在数轴上的画法是解题的关键.二、填空题1、x>-5【解析】【分析】根据不等式的性质求解即可.【详解】解:,3x>-15,解得x>-5,故答案为:x>-5.【点睛】此题考查求不等式的解集,正确掌握解不等式的步骤及方法是解题的关键.2、2x−y≤0【解析】【分析】直接利用“x的2倍”即2x,再减y,结果是非正数,即小于等于零,即可得出不等式.【详解】解:由题意可得:2x−y≤0.故答案为:2x−y≤0.【点睛】此题主要考查了由实际问题抽象出一元一次不等式,正确得出不等关系是解题关键.3、 > < < > < <【解析】【分析】首先观察数轴,得到b<0<a且|b|>|a|,进一步利用加减法计算方法和绝对值的意义解答即可.【详解】解:(1)a>b;(2)|a|<|b|;(3)a+b<0;(4)a-b>0;(5)a+b<a-b;(6)ab<a.故答案为:(1)>;(2)<;(3)<;(4)>;(5)<;(6)<.【点睛】本题考查了利用数轴、绝对值的意义以及有理数的加减法计算方法解决问题.4、【解析】【分析】根据题意表示出a的2倍与的差小于5即可.【详解】解:由题意可得:a的2倍与的差小于5可表示为.故填.【点睛】本题考查列一元一次不等式,掌握列一元一次不等式的基本方法成为解答本题的关键.5、x<##x<0.25【解析】【分析】根据不等(2a−b)x+a−5b>0的解集是x<1,可得a与b的关系,根据解不等式的步骤,可得答案.【详解】解;不等式(2a−b)x+a−5b>0的解集是x<1,∴2a−b<0,2a−b=5b−a,a=2b,b<0,2ax−b>04bx−b>04bx>bx<,故答案为:x<.【点睛】本题考查了不等式的解集,注意不等式的两边都乘以或除以同一个负数,不等号的方向改变.三、解答题1、(1)长方形纸板用了(x+300)张,正方形纸板用了(200﹣x)张;(2)共有3种生产方案,方案1:生产竖式纸盒38个,横式纸盒62个;方案2:生产竖式纸盒39个,横式纸盒61个;方案3:生产竖式纸盒40个,横式纸盒60个;(3)293或298【解析】【分析】(1)可根据竖式纸盒+横式纸盒=100个,每个竖式纸盒需1个正方形纸板和4个长方形纸板,每个横式纸盒需3个长方形纸板和2个正方形纸板来填空;(2)根据题意,列不等式组求解即可;(3)设可以生产竖式纸盒m个,横式纸盒个,可列出方程,再根据a的取值范围求出a的取值范围即可.【详解】解:(1)设生产竖式纸盒x个,则生产横式纸盒(100﹣x)个,则长方形纸板用了张,正方形纸板用了张∴长方形纸板用了(x+300)张,正方形纸板用了(200﹣x)张.(2)依题意,得:, 解得:.∵x为整数,∴x=38,39,40,∴共有3种生产方案,方案1:生产竖式纸盒38个,横式纸盒62个;方案2:生产竖式纸盒39个,横式纸盒61个;方案3:生产竖式纸盒40个,横式纸盒60个.(3)设可以生产竖式纸盒m个,横式纸盒个,由此可得,为偶数,依题意,得:∵∴∴∴或∴或答:a的值为293或298.【点睛】本题考查一元一次不等式组的应用,列代数式,解题的关键是读懂题意,找到等量关系,正确列不等式求解,注意实际问题最后取整数解.2、(1)x≥﹣1,数轴见解析;(2),2【解析】【分析】(1)根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,进而即可求解.【详解】解:(1)移项,得:3x﹣5x≤2,合并同类项,得:﹣2x≤2,系数化为1,得:x≥﹣1,将不等式的解集表示在数轴上如下: (2)解不等式2(x﹣2)≤3﹣x,得:x≤,解不等式,得:x>﹣3,则不等式组的解集为﹣3<x≤,∴其最大整数解为2.【点睛】本题主要考查解一元一次不等式以及不等式组,熟练掌握解不等式(组)的基本步骤是解题的关键.3、(1),图见解析;(2),图见解析【解析】【分析】(1)根据不等式求解的步骤,移项、合并同类项、系数化为1,即可得出答案,根据解集即可表示在数轴上;(2)先去括号、移项、合并同类项、系数化为1,这时注意:由不等式的性质,两边同时乘或除同一个负数,不等号改变,即可得出答案,根据解集即可表示在数轴上.【详解】(1),移项得:,合并同类项得:,系数化为1得:.解集表示在数轴上如下所示:;(2),去括号得:,移项得:,合并同类项得:,系数化为1得:.解集表示在数轴上如下所示:.【点睛】本题考查解不等式,熟练掌握解不等式的步骤,并知道把解集用数轴表示是解题的关键.4、2a﹣1<0【解析】【分析】根据题意列出不等式即可.【详解】解:由题意得:2a﹣1<0,故答案为:2a﹣1<0.【点睛】此题主要考查列不等式,解题的关键是根据题意找到不等关系.5、1,2,3,4,5【解析】【分析】先求出不等式的解集,再求出不等式的正整数解即可.【详解】解:移项得:-11x>4-64,合并同类项得:-11x>-60,∴不等式的解集为x<,∴正整数解为1,2,3,4,5.【点睛】本题考查了解一元一次不等式和不等式的整数解,能求出不等式的解集是解此题的关键.
相关试卷
这是一份北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试同步测试题,共19页。试卷主要包含了若,则下列不等式不一定成立的是,已知x=1是不等式等内容,欢迎下载使用。
这是一份北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试随堂练习题,共18页。
这是一份数学七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试同步训练题,共18页。试卷主要包含了若,则下列不等式不一定成立的是,若成立,则下列不等式不成立的是,关于x的方程3﹣2x=3,下列式子等内容,欢迎下载使用。