![【历年真题】:2022年天津市中考数学模拟真题测评 A卷(精选)第1页](http://img-preview.51jiaoxi.com/2/3/12675476/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【历年真题】:2022年天津市中考数学模拟真题测评 A卷(精选)第2页](http://img-preview.51jiaoxi.com/2/3/12675476/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【历年真题】:2022年天津市中考数学模拟真题测评 A卷(精选)第3页](http://img-preview.51jiaoxi.com/2/3/12675476/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
【历年真题】:2022年天津市中考数学模拟真题测评 A卷(精选)
展开
这是一份【历年真题】:2022年天津市中考数学模拟真题测评 A卷(精选),共24页。试卷主要包含了有下列说法,下列说法正确的是等内容,欢迎下载使用。
2022年天津市中考数学模拟真题测评 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知线段AB、CD,AB<CD,如果将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,这时点B的位置必定是( )A.点B在线段CD上(C、D之间)B.点B与点D重合C.点B在线段CD的延长线上D.点B在线段DC的延长线上2、下列各对数中,相等的一对数是( )A.与 B.与 C.与 D.与3、用配方法解一元二次方程x2+3=4x,下列配方正确的是( )A.(x+2)2=2 B.(x-2)2=7 C.(x+2)2=1 D.(x-2)2=14、如图所示,BE⊥AC于点D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=( )A.25° B.27° C.30° D.45°5、工人常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使CM=CN,过角尺顶点C作射线OC,由此作法便可得△NOC≌△MOC,其依据是( )A.SSS B.SAS C.ASA D.AAS6、若(mx+8)(2﹣3x)中不含x的一次项,则m的值为( )A.0 B.3 C.12 D.167、有下列说法:①两条不相交的直线叫平行线;②同一平面内,过一点有且只有一条直线与已知直线垂直;③两条直线相交所成的四个角中,如果有两个角相等,那么这两条直线互相垂直;④有公共顶点的两个角是对顶角.其中说法正确的个数是( )A.1 B.2 C.3 D.48、在数-12,π,-3.4,0,+3,中,属于非负整数的个数是( )A.4 B.3 C.2 D.19、下列说法正确的是( )A.无限小数都是无理数B.无理数都是无限小数C.有理数只是有限小数D.实数可以分为正实数和负实数10、如图,在矩形ABCD中,点E在CD边上,连接AE,将沿AE翻折,使点D落在BC边的点F处,连接AF,在AF上取点O,以O为圆心,线段OF的长为半径作⊙O,⊙O与AB,AE分别相切于点G,H,连接FG,GH.则下列结论错误的是( )A. B.四边形EFGH是菱形C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知某数的相反数是﹣2,那么该数的倒数是 __________________.2、为了响应全民阅读的号召,某校图书馆利用节假日面向社会开放.据统计,第一个月进馆560人次,进馆人次逐月增加,第三个月进馆830人次.设该校图书馆第二个月、第三个月进馆人次的平均增长率为x,则可列方程为______.3、两根长度分别为3,5的木棒,若想钉一个三角形木架,第三根木棒的长度可以是________.(写一个值即可)4、点P为边长为2的正方形ABCD内一点,是等边三角形,点M为BC中点,N是线段BP上一动点,将线段MN绕点M顺时针旋转60°得到线段MQ,连接AQ、PQ,则的最小值为______.5、如图,在△ABC中,∠ABC=120°,AB=12,点D在边AC上,点E在边BC上,sin∠ADE=,ED=5,如果△ECD的面积是6,那么BC的长是_____.三、解答题(5小题,每小题10分,共计50分)1、用适当方法解下列一元二次方程:(1)x2﹣6x=1;(2)x2﹣4=3(x﹣2).2、解方程:x2﹣4x﹣9996=0.3、解方程:(1);(2).4、如图,已知点、分别在中的边、的延长线上,且.(1)如果,,,求的长;(2)如果,,,过点作,垂足为点,求的长.5、在平面直角坐标系中,对于点,,将点关于直线对称得到点,当时,将点向上平移个单位,当时,将点向下平移个单位,得到点,我们称点为点关于点的对称平移点.例如,如图已知点,,点关于点的对称平移点为.(1)已知点,,①点关于点的对称平移点为________(直接写出答案).②若点为点关于点的对称平移点,则点的坐标为________.(直接写出答案)(2)已知点在第一、三象限的角平分线上,点的横坐标为,点的坐标为.点为点关于点的对称平移点,若以,,为顶点的三角形围成的面积为1,求的值. -参考答案-一、单选题1、A【分析】根据叠合法比较大小的方法始点重合,看终点可得点B在线段CD上,可判断A,点B与点D重合,可得线段AB=CD,可判断B,利用AB>CD,点B在线段CD的延长线上,可判断C, 点B在线段DC的延长线上,没有将AB移动到CD的位置,无法比较大小可判断D.【详解】解:将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,如图,点B在线段CD上(C、D之间),故选项A正确,点B与点D重合,则有AB=CD与AB<CD不符合,故选项B不正确;点B在线段CD的延长线上,则有AB>CD,与AB<CD不符合,故选项C不正确;点B在线段DC的延长线上,没有将AB移动到CD的位置,故选项D不正确.故选:A.【点睛】本题考查线段的比较大小的方法,掌握叠合法比较线段大小的方法与步骤是解题关键.2、C【分析】先化简,再比较即可.【详解】A. ∵=1,=-1,∴≠,故不符合题意;B. ∵=-1,=1,∴≠,故不符合题意;C. ∵=-1,=-1,∴=,故符合题意;D. ∵=,=,∴≠,故不符合题意;故选C.【点睛】本题考查了有理数的乘方,绝对值,有理数的大小比较,正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小.正确化简各数是解答本题的关键.3、D【分析】根据题意将方程常数项移到右边,未知项移到左边,然后两边都加上4,左边化为完全平方式,右边合并即可得到答案.【详解】,整理得:,配方得:,即.故选:D.【点睛】本题考查用配方法解一元二次方程,掌握配方法的步骤是解题的关键.4、B【分析】根据BE⊥AC,AD=CD,得到AB=BC,∠ABC,证明△ABD≌△CED,求出∠E=∠ABE=27°.【详解】解:∵BE⊥AC,AD=CD,∴BE是AC的垂直平分线,∴AB=BC,∴∠ABC=27°,∵AD=CD,BD=ED,∠ADB=∠CDE,∴△ABD≌△CED,∴∠E=∠ABE=27°,故选:B.【点睛】此题考查了线段垂直平分线的性质,全等三角形的判定及性质,熟记线段垂直平分线的性质是解题的关键.5、A【分析】利用边边边,可得△NOC≌△MOC,即可求解.【详解】解:∵OM=ON,CM=CN, ,∴△NOC≌△MOC(SSS).故选:A【点睛】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法——边角边、角边角、角角边、边边边是解题的关键.6、C【分析】先计算多项式乘以多项式得到结果为,结合不含的一次项列方程,从而可得答案.【详解】解:(mx+8)(2﹣3x) (mx+8)(2﹣3x)中不含x的一次项, 解得: 故选C【点睛】本题考查的是多项式乘法中不含某项,掌握“多项式乘法中不含某项即某项的系数为0”是解题的关键.7、A【分析】根据平行线的定义、垂直的定义及垂线的唯一性、对顶角的含义即可判断.【详解】同一平面内不相交的两条直线叫做平行线,故说法①错误;说法②正确;两条直线相交所成的四个角中,如果有一个角是直角,那么这两条直线互相垂直,当这两个相等的角是对顶角时则不垂直,故说法③错误;根据对顶角的定义知,说法④错误;故正确的说法有1个;故选:A【点睛】本题考查了两条直线的位置关系中的相关概念及性质,掌握这些概念是关键.8、C【分析】非负整数即指0或正整数,据此进行分析即可.【详解】解:在数-12,π,-3.4,0,+3,中,属于非负整数的数是:0,+3,共2个,故选:C.【点睛】本题主要考查了有理数.明确非负整数指的是正整数和0是解答本题的关键.9、B【分析】根据定义进行判断即可.【详解】解:A中无限小数都不一定是无理数,其中无限循环小数为有理数,故本选项错误.B中根据无理数的定义,无理数都是无限小数,故本选项正确.C中有理数不只是有限小数,例如无限循环小数,故本选项错误;D中实数可以分为正实数和负实数和0,故本选项错误;故选:B.【点睛】本题考查了有理数,无理数,实数的定义.解题的关键在于正确区分各名词的含义.10、C【分析】由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED,再根据切线长定理得到AG=AH,∠GAF=∠HAF,进而求出∠GAF=∠HAF=∠DAE=30°,据此对A作出判断;接下来延长EF与AB交于点N,得到EF是⊙O的切线,ANE是等边三角形,证明四边形EFGH是平行四边形,再结合HE=EF可对B作出判断;在RtEFC中,∠C=90°,∠FEC=60°,则EF=2CE,再结合AD=DE对C作出判断;由AG=AH,∠GAF=∠HAF,得出GH⊥AO,不难判断D.【详解】解:由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED.∵AB和AE都是⊙O的切线,点G、H分别是切点,∴AG=AH,∠GAF=∠HAF,∴∠GAF=∠HAF=∠DAE=30°,∴∠BAE=2∠DAE,故A正确,不符合题意;延长EF与AB交于点N,如图:∵OF⊥EF,OF是⊙O的半径,∴EF是⊙O的切线,∴HE=EF,NF=NG,∴△ANE是等边三角形,∴FG//HE,FG=HE,∠AEF=60°,∴四边形EFGH是平行四边形,∠FEC=60°,又∵HE=EF,∴四边形EFGH是菱形,故B正确,不符合题意;∵AG=AH,∠GAF=∠HAF,∴GH⊥AO,故D正确,不符合题意;在Rt△EFC中,∠C=90°,∠FEC=60°,∴∠EFC=30°,∴EF=2CE,∴DE=2CE.∵在Rt△ADE中,∠AED=60°,∴AD=DE,∴AD=2CE,故C错误,符合题意.故选C.【点睛】本题是一道几何综合题,考查了切线长定理及推论,切线的判定,菱形的定义,含30的直角三角形的性质,等边三角形的判定和性质,翻折变换等,正确理解翻折变换及添加辅助线是解决本题的关键.二、填空题1、【分析】根据相反数与倒数的概念可得答案.【详解】解:∵某数的相反数是﹣2,∴这个数为2,∴该数的倒数是.故答案为:.【点睛】本题考查了相反数与倒数的概念,掌握其概念是解决此题的关键.2、【分析】利用第三个月进馆人次第一个月进馆人次平均增长率),即可得出关于的一元二次方程,此题得解.【详解】解:依题意得:.故答案为:.【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是找准等量关系,正确列出一元二次方程.3、4(答案不唯一)【分析】根据三角形中“两边之和大于第三边,两边之差小于第三边”,进行分析得到第三边的取值范围;再进一步找到符合条件的数值.【详解】解:根据三角形的三边关系,得第三边应大于两边之差,即;而小于两边之和,即,即第三边,故第三根木棒的长度可以是4.故答案为:4(答案不唯一).【点睛】本题主要考查了三角形三边关系,熟练掌握两边之和大于第三边,两边之差小于第三边是解题的关键.4、【分析】如图,取的中点,连接,,,证明,进而证明在上运动, 且垂直平分,根据,求得最值,根据正方形的性质和勾股定理求得的长即可求得的最小值.【详解】解:如图,取的中点,连接,,,将线段MN绕点M顺时针旋转60°得到线段MQ,,是等边三角形,,是的中点,是的中点是等边三角形,即在和中,又是的中点点在上是的中点,是等边三角,又垂直平分即的最小值为四边形是正方形,且的最小值为故答案为:【点睛】本题考查了正方形的性质等边三角形的性质,旋转的性质,全等三角形的性质与判定,勾股定理,垂直平分线的性质与判定,根据以上知识转化线段是解题的关键.5、##【分析】如图,过点E作EF⊥BC于F,过点A作AH⊥CB交CB的延长线于H.解直角三角形求出BH,CH即可解决问题.【详解】解:如图,过点E作EF⊥BC于F,过点A作AH⊥CB交CB的延长线于H.∵∠ABC=120°,∴∠ABH=180°﹣∠ABC=60°,∵AB=12,∠H=90°,∴BH=AB•cos60°=6,AH=AB•sin60°=6,∵EF⊥DF,DE=5,∴sin∠ADE== ,∴EF=4,∴DF===3,∵S△CDE=6,∴ ·CD·EF=6,∴CD=3,∴CF=CD+DF=6,∵tanC==,∴ =,∴CH=9,∴BC=CH﹣BH=9﹣6.故答案为:【点睛】本题主要考查了解直角三角形,根据题意构造合适的直角三角形是解题的关键.三、解答题1、(1),(2)【分析】(1)利用配方法求解即可;(2)利用因式分解法求解即可.(1)解:两边同加.得,即,两边开平方,得,即,或,∴,;(2)解:,∴,∴,∴,或,解得.【点睛】本题主要考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.2、,【分析】运用因式分解法求解方程即可.【详解】解:x2﹣4x﹣9996=0 ∴,【点睛】本题考查了解一元二次方程-因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).3、(1)(2)【分析】(1)先去括号,再移项合并同类项,即可求解;(2)先去分母,再去括号,然后移项合并同类项,即可求解.(1)解:去括号得:移项合并同类项得:解得:;(2)解:去分母得:去括号得: ,移项合并同类项得:解得:.【点睛】本题主要考查了解一元一次方程,熟练掌握解一元一次方程的基本步骤是解题的关键.4、(1)8;(2).【分析】(1)根据,得出∠E=∠C,∠EDA=∠B,可证△DEA∽△BCA,得出,可求,根据,得出,求BC即可;(2)根据,得出△DEA∽△BCA,得出,根据,得出,,在中,,代入数据得出,即可求出DF(1)解:∵,∴∠E=∠C,∠EDA=∠B,∴△DEA∽△BCA,∴,∵,,∴,∵,∴.∴.(2)解:∵,∴△DEA∽△BCA,∴,∵,∴,∵,∴,∴,∵,垂足为点,∴.在中,,即,∴.【点睛】本题考查平行线性质,三角形相似判定与性质,锐角三角函数,掌握平行线性质,三角形相似判定与性质,锐角三角函数是解题关键.5、(1)①(6,4);②(3,-2)(2)的值为【分析】(1)由题意根据点P为点M关于点N的对称平移点的定义画出图形,可得结论;(2)根据题意分两种情形:m>0,m<0,利用三角形面积公式,构建方程求解即可.(1)解:①如图1中,点关于点的对称平移点为.故答案为:.②若点为点关于点的对称平移点,则点的坐标为.故答案为:;(2)解:如图2中,当时,四边形是梯形,,,,,或(舍弃),当时,同法可得,综上所述,的值为.【点睛】本题考查坐标与图形变化-旋转,三角形的面积公式,轴对称,平移变换等知识,解题的关键是理解新定义,学会利用参数构建方程解决问题.
相关试卷
这是一份【历年真题】2022年最新中考数学模拟真题练习 卷(Ⅱ)(精选),共26页。
这是一份【历年真题】最新中考数学模拟测评 卷(Ⅰ)(精选),共23页。试卷主要包含了如图,是的外接圆,,则的度数是等内容,欢迎下载使用。
这是一份【历年真题】2022年辽宁省丹东市中考数学模拟测评 卷(Ⅰ)(精选),共27页。
![英语朗读宝](http://img.51jiaoxi.com/images/ed4b79351ae3a39596034d4bbb94b742.jpg)